未经允许,请勿转载,否则视为侵权!
今天分享“孩子天生会数学”第五章中的“给数字和数量搭桥”游戏。顾名思义,这个游戏的目的是让孩子学会将物品的数量和数字相对应,从而理解“这是几个”的问题。
材料:书中建议用扑克牌和图片卡,我用桌游“数字恐龙”代替,考虑到“数字恐龙”只有1-10的数字,我另外自制了11-20的数字卡和点卡,详见下文。这款“数字恐龙”我们玩过很多次,孩子对卡片也比较熟悉。不过按照我们玩游戏的惯例,玩游戏前我都会让孩子熟悉游戏道具,这样便于后续游戏的进行及拓展,家长也可以很好的观察孩子的思辨能力,不会因为不熟悉道具而中断思考。“数字恐龙”桌游,共有1-10数字卡及图片卡各一张,另有5张恐龙卡及木恐龙一个。
将“数字恐龙”所有卡片背面朝上,双方轮流翻卡片,每次翻两张,数字跟图片数量匹配一致,即木恐龙去你家,直至所有卡片翻完。木恐龙在谁家,谁就赢得一张恐龙卡片,最终谁的恐龙卡片多,谁获胜。
这个游戏也很考验孩子的记忆能力,当翻出的卡片不能匹配时,卡片需要重新背朝上摆回去,下次翻到与之能匹配的卡片时,就可以根据记忆来寻找对应的卡片了。我用卡纸自制了一套11-20的数字和点卡,共20张。点卡的分布是根据恬恬的接受能力设计的,目的是希望熟悉的数字能一眼看出(比如11,12,16,20等),不熟悉的数字能通过10的拆分来识别。不过我不得不承认,像7+8,9+8这种的组合,对孩子而言难度不小。
在熟悉卡片的过程中,让孩子顺便完成排序,也能增强孩子对数字的敏感度。同1-10的游戏规则类似,同样将卡片背面朝上,双方轮流翻卡片,每次翻两张,若数字和数量匹配,则这一对卡片归自己。直至所有的卡片配对完毕,谁手中赢得的卡片多,即为赢。
这个看起来只是将数字扩大到20的游戏,难度却不小。点卡排列没有明显的规律,导致孩子需要不断的点数或拆分组合来确认数量,方能确保数字和数量匹配。不过这样玩的好处是:在不断的重复中,孩子的拆分能力有显著提高,能很迅速拆分组合,从而提高数数的效率。在翻卡片的过程中,每匹配成功一对,我都会问孩子:还有哪些数字没有匹配成功?还剩哪些奇数没有匹配?还有哪些偶数没有匹配?让孩子做到心中有数,也能提高匹配的效率。
在剩下3对尚未匹配成功的时候,我引导孩子思考:还剩几对卡片没有匹配?都有哪些数字?6张卡片可否平分?平分后一半是多少?等等诸如此类的问题。这样做的目的是让孩子明白但凡没有匹配的卡片,数量总和均为偶数。
我们抛开数字卡,用10张点卡玩比大小的游戏。我整理好点卡,让孩子平均分配给我们两个人,分之前先思考每个人几张,分完后再核对是否正确。
这个游戏玩法比较简单,双方轮流出点卡,谁的点数大卡片即归谁。出点卡的方式可以是随机的,也可以是经过思考后选择的。恬恬在玩11-20的不规则卡片时,发现有些排列相近的卡片可以当做加法来玩,比如12+1=13,12+4=16,她是以排列规律的12为基础做了相应的加法。这个想法给了我灵感,我做了一套类似十格阵的11-20的卡片。起初恬恬看到这密密麻麻的卡片有点畏难情绪,觉得点太多不想数。我让她仔细观察,寻找规律。很快她发现原来卡片上黑点的数量是固定的,都是10,只需要数每张卡片上红色的点即可。
发现了卡片的规律,做数量排序就很轻松了,也能轻而易举的完成数字卡的匹配。
仍是游戏6中排列规则的点卡,我让恬恬用不规则的点卡进行匹配。因为前面玩过几个游戏,所以对卡片已经很熟悉了,玩起来也较之前容易的多。
同游戏7一样,不过这次加大了难度,将卡片背面朝上,通过翻卡片的形式来进行数量匹配。当游戏增加了趣味性,孩子根本不会拒绝,迫不及待的跃跃欲试。
以上就是我们“给数字和数量搭桥”游戏的玩法与延伸,通过这个游戏,可以让孩子将数量和数字联系起来,数字7不再是一个数字,而是代表7个物品,同样7个物品可以用数字7来表示。打通了数字和数量的桥梁,孩子对数字的理解也变得有意义,也有利于数感的培养。
希望我的分享与你有益,也欢迎分享你的陪玩游戏~