干货!全面解读MinION纳米孔测序技术及应用 – SEQ.CN

近些年来,随着生物信息分析方法的发展,MinION测序reads成功比对参考基因组的比例已经从66%提升至92%。文章下面对各种工具的适用场景进行了分别介绍。工具概述见表1。

(1)碱基识别工具

Metrichor是ONT公司推出的基于隐马尔可夫模型进行碱基识别的软件。它的使用需要网络连接。MinION注册用户需要获得开发者账号才能获得软件的源代码。2016年初,两个实验室分别开发了Nanocall和DeepNano软件。这两个软件都可以在本地运行,不需要网络连接。Nanocall基于隐马尔可夫模型,可对1D read在本地进行碱基识别;DeepNano基于recurrent neural network framework,可以获得比隐马尔可夫模型更准确的碱基识别。

(2)序列比对工具

传统的NGS序列比对软件不能满足MinION序列比对的需求。这是因为MinION测序数据错误率相对高且序列长,即使调整参数也不能取得好的效果。在这种情况下,适合MinION测序数据的比对软件应运而生。

MarginAlign是通过更好地估计MinION测序reads测序错误来源从而提高与参考基因组的比对效率。通过评估检测到的变异,发现其显著提高了比对的准确性。由于MarginAlign是基于LAST或BWA mem的比对结果进行优化,结果的最终准确性依赖最初的比对结果。GraphMap是另一个用于MinION测序数据比对的软件。它利用的是一种启发式(heuristics)方法,对高错误率reads和长reads进行了优化。一项研究表明GraphMap比对的灵敏性可与BLAST媲美,且它对reads测序错误率的估计与MarginAlign相当。

(3) 从头组装工具

MinION测序数据不适合利用NGS数据组装的de Bruijn图法进行组装,主要存在两方面的原因。第一,de Bruijn图法等方法依赖测序reads拆分的k-mer测序准确,而高错误率的MinION测序reads不能保证这一点;第二,de Bruijn图的结构不适用长reads。

MinION测序数据的长reads更适合Sanger测序时期基于有overlap的共有(consensus)序列组装的方法。需要的是在组装前进行测序reads的纠错。第一个基于这种原理进行组装的研究组利用MinION数据组装了一个完整的E. coli K-12 MG1655基因组,序列准确率达到99.5%。他们利用的流程称为nanocorrect,首先利用graph- based,greedy partial order aligner方法进行纠错,然后利用Celera Assembler将纠错后的reads进行组装,最后利用nanopolish对组装结果进行进一步提升。

(4)单核苷酸变异检测工具

Reference allele bias是一种在变异检测中倾向于少检测出变异的现象。该现象在测序reads错误率高的情况下尤为严重。

MarginAlign中的marginCaller模块是研究机构开发的适用于MinION测序数据的变异检测软件。MarginCaller利用maximum-likelihood参数估计和多条测序reads序列比对来检测单核苷酸变异。当计算机模拟出测序错误为1%时,测序深度在60X,marginCaller检测出的SNV具有97%的准确率和完整度。另外一项研究中,研究者利用GraphMap方法,检测人基因组的杂合变异,可以达到96%的准确率。利用计算机模拟的数据,GraphMap同样可以高准确率,高完整度地检测出结构变异。Nanopolish也可以用来检测变异。它用的是event-level alignment算法。在该方法中,从参考基因组序列开始,依次评估参考基因组序列产生的电信号与测序reads的相似性进而依次修饰参考基因组序列,生成一个consensus read。直到consensus read与测序read产生的电信号足够相似,将consensus read与参考基因组序列比较,得到变异。该方法在埃博拉病毒的研究中有大约80%的准确性。

PoreSeq采用与Nanopolish类似的算法。它可以利用更低深度的测序数据获得高准确率和高完整度的SNV检测。在一项研究中,PoreSeq在16X测序深度下获得99%准确率和完整度的SNV检测,与marginAlign相比,它显著降低了测序深度。

(5)共有序列的测序(consensus sequencing)方法

MinION测序数据目前只有92%的准确性。在低深度测序的情况下,不能够满足类似单体型(haplotype phasing)和人样品的SNV检测的要求。文章提到的解决问题的方法是rolling circle amplication,它的原理是将一个片段进行多次扩增,在一个DNA分子上生成多个拷贝,这样最终获得的共有序列测序结果的准确率可以达到97%。

三、MinION目前的应用领域

1、即时检测传染源

NGS测序方法可以在医院环境下进行传染源等病菌的检测,而MinION测序方法提供的是一种全新的体验。MinION在测序读长,携带的方便性,检测时长方面具有NGS不可比的优势。文献记载从样品准备到发现致病菌只需要6小时时间,而从样品放置机器到发现致病菌只需要4分钟。文章列举了截至目前用MinION测序仪涉及研究的物种及详细描述了西非爆发埃博拉病毒时,MinION测序方法在病毒检测过程中起到的重要作用。
2、非整倍体检测
MinION可以在胎儿非整倍体产前检测中发挥重要作用。利用NGS平台,通常需要1-3周时间获得结果。而利用MinION测序方法,文献报道只需要4小时。

3 、太空应用

在太空飞行中,发掘细菌和病毒是很困难的事情。大部分研究是将样品带回地球进行测序鉴定。目前,NASA准备利用MinION测序仪在国际空间站进行病菌的实时测序。

四、 展望

1. PromethION

为了满足研究人员对高通量测序的需求,ONT公司开发了一个台式纳米孔测序仪—PromethION。PromethION有48个flow cell,可以单独运行也可以并行。每个flow cell包括3,000个通道(channel),每天产生6Tb测序数据。

2.  测序read准确性

目前MinION测序仪的测序准确率在92%左右。对于类似致病菌和可变剪切的发掘,这样的测序准确率可以满足需求。但是对于临床检测,通常read准确率需要达到99.99%。因此,文章提到ONT公司需要在测序相关的化学反应和碱基识别软件方面进行优化。另外,文章提到MinION测序方法存在非随机的测序错误。比如MinION不能很好处理长于6个核苷酸的同聚物的测序,同时缺少碱基修饰检测的内参训练。如果这两个问题能够得到解决,共有序列(consensus)测序的准确率可以达到大于99.99%。

3. 测序read长度

目前MinION测序长度达到150kb。在未来一段时间,可以期许其测序长度可以得到更大提升。

4. RNA直接测序

逆转录和PCR扩增会导致很多RNA自身信息的丢失,所以目前ONT公司和一些研究机构正在尝试用纳米孔技术进行RNA直接测序。之前的研究已经为此奠定了基础,比如研究表明可以对tRNA进行单通道和固态纳米孔(solid-state nanopore)检测,且纳米孔可以检测DNA和tRNA的碱基修饰。

5. 单分子蛋白测序

目前,质谱(mass spectrometry)是做蛋白组分析较好的技术,但是对于灵敏性,准确性和分辨率,目前的技术都存在局限性。2013年一项研究报道了酶介导的蛋白通过单通道纳米孔。这项研究表明蛋白的序列特征可以被检测。这些发现为蛋白质纳米孔测序奠定了很好的基础。
参考文献:The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community

来源:生信人

(0)

相关推荐