AI生成中国山水画!普林斯顿姑娘本科毕业作品,线条笔触骗过半数人类观察者
大数据文摘出品
论文链接:
https://arxiv.org/pdf/2011.05552.pdf
和人类一样,先画草图后着色
Stage I: SketchGAN Stage II: PaintGAN
实验的结果也很惊人。
在最后进行测评时,242名参与者中,模型生成的画有一半以上(55%)被误认为是人类作品。
在“审美愉悦”、“艺术构图”、“清晰”和“创造力”方面,SAPGAN模型在所有艺术类别中的评分始终高于基线。SAPGAN与人类绘画最大的区别是“清晰”。
让人匪夷所思的是,中国人可能更容易被SAPGAN欺骗。作为母语为汉语的人,多少是见过几幅山水画的,但是在判别一幅山水画是否为SAPGAN所作时,中国人可能更容易被欺骗。
作者比较了母语为汉语和英语的参与者的结果,看看文化接触是否能让中国参与者正确判断这些画。然而,说汉语的参与者平均得分为49.2%,明显低于说英语的考生的73.5%。
也就是说,说中文的人70%的时候还会把SAPGAN的画误认为是人,而整体水平是55%。显然,不管对中国文化的熟悉程度如何,参与者都很难区分绘画的来源。
文章提出的模型是在一个新的中国传统山水画数据集上训练的,这一数据集不是来自百度或者谷歌,而是由作者本人收集。
AIice表示,目前的山水画数据集存在不唯一性和图像质量和数量不足的问题,为了促进这一领域的发展,Alice本人建立了2192幅高质量中国传统山水画组成的新数据集,这些山水画来自普林斯顿艺术博物馆藏品。
目前,这些有价值的绘画在很大程度上还没有被生成创作研究触及,作者也在GitHub上发布了这一数据集供公众使用。
Alice在接受学校采访时说,普林斯顿大学美术馆有一个令人惊异的开放式数字收藏中国画,这对我的数据集很有价值,但不幸的是,大多数研究人员没有充分利用它。
看到这里,你可能觉得Alice是一位“资深程序员”了。但是她表示,“我写这篇论文的时候从来没有上过机器学习课程,所以我经常被这样一个问题弄得不知所措: 像我这样的新手能为已经存在的创新研究做些什么。但是我发现总是有一个有趣的角度来处理一个问题,因为一个人的兴趣和技能是他们独一无二的。”
在谈到对其他的学生建议时,Alice说,将数字化人文融入你的工作中是自然而然的事。找到你感兴趣的东西——无论是19世纪的文学作品还是爵士乐——总有一种方法可以从中收集数据,用来分析或制作与之相关的技术工具。
谈到自己未来的规划,Alice表示自己准备去Facebook工作,成为一名软件工程师。