ECC校验

NAND FLASH ECC校验原理与实现

ECC简介
  由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。为了检测数据的可靠性,在应用NAND Flash的系统中一般都会采用一定的坏区管理策略,而管理坏区的前提是能比较可靠的进行坏区检测。
  如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。
  对数据的校验常用的有奇偶校验、CRC校验等,而在NAND Flash处理中,一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。

ECC原理
  ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1,如下图所示:

  
  ECC的列校验和生成规则如下图所示:

  用数学表达式表示为:
    P4=D7(+)D6(+)D5(+)D4  P4`=D3(+)D2(+)D1(+)D0
    P2=D7(+)D6(+)D3(+)D2  P2`=D5(+)D4(+)D1(+)D0
    P1=D7(+)D5(+)D3(+)D1  P1`=D6(+)D4(+)D2(+)D0
  这里(+)表示“位异或”操作
  
  ECC的行校验和生成规则如下图所示:

  用数学表达式表示为:
    P8 = bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P8
    ……………………………………………………………………………………
  这里(+)同样表示“位异或”操作
 
  当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB(out-of-band)数据区中。
  当从NAND Flash中读取数据的时候,每256字节我们生成一个ECC校验和,称之为新ECC校验和。
  校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。

ECC算法的实现
  static const u_char nand_ecc_precalc_table[] =
  {
    0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
    0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
    0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
    0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
    0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
    0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
    0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
    0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
    0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
    0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
    0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
    0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
    0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
    0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
    0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
    0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
  };

  // Creates non-inverted ECC code from line parity
  static void nand_trans_result(u_char reg2, u_char reg3,u_char *ecc_code)
  {
    u_char a, b, i, tmp1, tmp2;

    /* Initialize variables */
    a = b = 0x80;
    tmp1 = tmp2 = 0;

    /* Calculate first ECC byte */
    for (i = 0; i < 4; i++)
    {
      if (reg3 & a)    /* LP15,13,11,9 --> ecc_code[0] */
        tmp1 |= b;
      b >>= 1;
      if (reg2 & a)    /* LP14,12,10,8 --> ecc_code[0] */
        tmp1 |= b;
      b >>= 1;
      a >>= 1;
    }

    /* Calculate second ECC byte */
    b = 0x80;
    for (i = 0; i < 4; i++)
    {
      if (reg3 & a)    /* LP7,5,3,1 --> ecc_code[1] */
        tmp2 |= b;
      b >>= 1;
      if (reg2 & a)    /* LP6,4,2,0 --> ecc_code[1] */
        tmp2 |= b;
      b >>= 1;
      a >>= 1;
    }

    /* Store two of the ECC bytes */
    ecc_code[0] = tmp1;
    ecc_code[1] = tmp2;
  }

  // Calculate 3 byte ECC code for 256 byte block
  void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
  {
    u_char idx, reg1, reg2, reg3;
    int j;

    /* Initialize variables */
    reg1 = reg2 = reg3 = 0;
    ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;

    /* Build up column parity */
    for(j = 0; j < 256; j++)
    {

      /* Get CP0 - CP5 from table */
      idx = nand_ecc_precalc_table[dat[j]];
      reg1 ^= (idx & 0x3f);

      /* All bit XOR = 1 ? */
      if (idx & 0x40) {
        reg3 ^= (u_char) j;
        reg2 ^= ~((u_char) j);
      }
    }

    /* Create non-inverted ECC code from line parity */
    nand_trans_result(reg2, reg3, ecc_code);

    /* Calculate final ECC code */
    ecc_code[0] = ~ecc_code[0];
    ecc_code[1] = ~ecc_code[1];
    ecc_code[2] = ((~reg1) << 2) | 0x03;
  }

  // Detect and correct a 1 bit error for 256 byte block
  int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
  {
    u_char a, b, c, d1, d2, d3, add, bit, i;

    /* Do error detection */
    d1 = calc_ecc[0] ^ read_ecc[0];
    d2 = calc_ecc[1] ^ read_ecc[1];
    d3 = calc_ecc[2] ^ read_ecc[2];

    if ((d1 | d2 | d3) == 0)
    {
      /* No errors */
      return 0;
    }
    else
    {
      a = (d1 ^ (d1 >> 1)) & 0x55;
      b = (d2 ^ (d2 >> 1)) & 0x55;
      c = (d3 ^ (d3 >> 1)) & 0x54;

      /* Found and will correct single bit error in the data */
      if ((a == 0x55) && (b == 0x55) && (c == 0x54))
      {
        c = 0x80;
        add = 0;
        a = 0x80;
        for (i=0; i<4; i++)
        {
          if (d1 & c)
            add |= a;
          c >>= 2;
          a >>= 1;
        }
        c = 0x80;
        for (i=0; i<4; i++)
        {
          if (d2 & c)
            add |= a;
          c >>= 2;
          a >>= 1;
        }
        bit = 0;
        b = 0x04;
        c = 0x80;
        for (i=0; i<3; i++)
        {
          if (d3 & c)
            bit |= b;
          c >>= 2;
          b >>= 1;
        }
        b = 0x01;
        a = dat[add];
        a ^= (b << bit);
        dat[add] = a;
        return 1;
      }
      else
      {
        i = 0;
        while (d1)
        {
          if (d1 & 0x01)
            ++i;
          d1 >>= 1;
        }
        while (d2)
        {
          if (d2 & 0x01)
            ++i;
          d2 >>= 1;
        }
        while (d3)
        {
          if (d3 & 0x01)
            ++i;
          d3 >>= 1;
        }
        if (i == 1)
        {
          /* ECC Code Error Correction */
          read_ecc[0] = calc_ecc[0];
          read_ecc[1] = calc_ecc[1];
          read_ecc[2] = calc_ecc[2];
          return 2;
        }
        else
        {
          /* Uncorrectable Error */
          return -1;
        }
      }
    }

    /* Should never happen */
    return -1;
  }

ECC校验

(0)

相关推荐

  • 超能课堂(125):常见USB 3.0 U盘主控汇总

    SSD与U盘的结构其实是很相似的,内部主要构成是主控+闪存,闪存大家是通用的,不过主控就不一样了,因为性能需求.功耗和接口的不同SSD和U盘主控有大的区别,我们由于平时评测SSD比较多所以对SSD主控 ...

  • 大盘校验3416点,亟待方向选择!

    吴振锋加速波与您相伴(▲全网统一IP) 风险提示:本文章所述文字及案例分析仅为理论复盘记录使用,不构成投资指导,据此操作风险自担!当阅读本文时,代表你已接受本文的声明和隐私原则等条款.股市有风险,投资 ...

  • 律诗校验

    凡律诗前一联的"对句"与下一联"出句"的第二个字平仄必须相同,称作"粘",违者称作"失粘". 明 徐师曾 <文体明 ...

  • 短路电流的计算方法及电缆热稳定校验,很不错的知识点,果断收藏

    短路电流计算是电气工程师必须掌握的基本技能知识,但是很多电气初学者到现在还是一知半解的,今天小编就给大家短路电流的计算的方法及计算步骤,希望对初学电气的朋友有点帮助. (1)短路电流的定义 短路电流是 ...

  • 大盘震荡转暖,校验箱体上沿!

    吴振锋加速波与您相伴(▲全网统一IP) 风险提示:本文章所述文字及案例分析仅为理论复盘记录使用,不构成投资指导,据此操作风险自担!当阅读本文时,代表你已接受本文的声明和隐私原则等条款.股市有风险,投资 ...

  • AMD RX 6600/6600XT现身ECC,搭载8GB GDDR6而非12GB

    AMD于3月18日推出了Radeon RX 6700 XT,不过刚发售就缺货,成为新一代新鲜的空气卡,之前有传言说预计在4月将推出RX 6600.也有可能是RX 6600 XT,不过现在都5月了,连个 ...

  • 分析图专题丨成果校验篇

    Hello小伙伴们,又到了每周一的制图教室时间啦,今天为大家带来的是分析图专题的第三部分:成果校验篇. 经过了前期对环境的分析.中期的设计推演,最后我们还需要对已经完成的设计进行一番校验,用分析图告诉 ...

  • 分析图专题丨成果校验详解

    Hello小伙伴们,又到了每周一的制图教室时间啦,今天为大家带来的是分析图系列的第六讲:成果校验篇的实际演练~ 回顾一下我们在上一篇中讲过的内容,我们将成果校验的分析内容分为了三部分:功能分区与排布. ...

  • 标定、检定、校准、校验一文搞懂

    内审员培训 今天 在日常工作中我们可能接触到标定.检定.校准.校验这几个名词,它们之间有什么区别呢?今天我们就深扒一下,一起来看看吧. 名词解释 标定: 通过测量标准器的偏差来补偿仪器系统误差,从而改 ...

  • 太乙金华宗旨5回光差谬:每步皆有校验

    太乙金华宗旨·回光差谬第五 吕祖曰:诸子工夫,渐渐纯熟,然枯木岩前错落多,正要细细开示.此中消息,身到方知,吾今则可以言矣. 释义 吕祖说:各位现在的功夫渐渐纯熟了.不过俗话说:"枯木岩前错 ...