22.从0学ARM-uboot中的网络协议栈
本篇是从0学ARM系列文章的最后一篇,后面暂无更新计划。
想学习ARM知识,建议收藏下面的合集的链接。
《从0学ARM》
uboot中网络协议栈
网卡的驱动,对于上层协议来说,已经封装好了发送和接收数据的接口,那么上层协议栈只需要按照顺序调用对应的网卡驱动函数就可以进行网络数据的收发。
uboot中的协议栈相对来说比较简单,有以下几个特点:
传输层只支持UDP协议; 目前只支持ICMP、TFTP、NFS、DNS、DHCP、CDP、SNTP等几种协议; 网卡采用poll接收数据包,而不是中断方式; 数据包的发送和接收操作是串行操作,不支持并发。
1. 网络协议栈架构
下面是uboot网络协议栈的函数调用流程:
2. 通过DNS命令来解析一个数据包的收发流程
uboot中,所有的命令都用宏U_BOOT_CMD来定义, dns命令的定义如下:
426 U_BOOT_CMD(
427 dns, 3, 1, do_dns,
428 'lookup the IP of a hostname',
429 'hostname [envvar]'
430 );
当我们在uboot的命令终端输入命令dns后,命令解析函数就会调用dns执行函数do_dns()
389 int do_dns(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])390 { ……406 if (strlen(argv[1]) >= 255) {407 printf('dns error: hostname too long\n');408 return 1;409 }410 411 NetDNSResolve = argv[1];412 413 if (argc == 3)414 NetDNSenvvar = argv[2];415 else416 NetDNSenvvar = NULL;417 418 if (NetLoop(DNS) < 0) {419 printf('dns lookup of %s failed, check setup\n', argv[1]);420 return 1;421 }422 423 return 0;424 }
406行 判断参数字符串长度,大于255非法 411行 参数1必须是要解析的主机,存储在NetDNSResolve 中 413~416行 保存dns命令的环境参数,该参数可以没有 418行 进入网络协议处理函数入口NetLoop(),并将对应的协议DNS传递给该函数
NetLoop()代码比较长,我们只分析其中比较重要的几段代码
316 /**********************************************************************/
317 /*
318 * Main network processing loop.
319 */
320
321 int NetLoop(enum proto_t protocol)
322 {
323 bd_t *bd = gd->bd;
324 int ret = -1;
…………
352 NetInitLoop();
…………
367 switch (protocol) {
368 case TFTPGET:
369 #ifdef CONFIG_CMD_TFTPPUT
370 case TFTPPUT:
371 #endif
372 /* always use ARP to get server ethernet address */
373 TftpStart(protocol);
374 break;
…………
426 #if defined(CONFIG_CMD_DNS)
427 case DNS:
428 DnsStart();
429 break;
430 #endif
438 }
…………
461 for (;;) {
462 WATCHDOG_RESET();
463 #ifdef CONFIG_SHOW_ACTIVITY
464 show_activity(1);
465 #endif
466 /*
467 * Check the ethernet for a new packet. The ethernet
468 * receive routine will process it.
469 */
470 eth_rx();
471
472 /*
473 * Abort if ctrl-c was pressed.
474 */
475 if (ctrlc()) {
476 /* cancel any ARP that may not have completed */
477 NetArpWaitPacketIP = 0;
478
479 net_cleanup_loop();
480 eth_halt();
481 /* Invalidate the last protocol */
482 eth_set_last_protocol(BOOTP);
483
484 puts('\nAbort\n');
485 /* include a debug print as well incase the debug
486 messages are directed to stderr */
487 debug_cond(DEBUG_INT_STATE, '--- NetLoop Abort!\n');
488 goto done;
489 }
…………
522 switch (net_state) {
523
524 case NETLOOP_RESTART:
525 NetRestarted = 1;
526 goto restart;
527
528 case NETLOOP_SUCCESS:
529 net_cleanup_loop();
530 if (NetBootFileXferSize > 0) {
531 char buf[20];
532 printf('Bytes transferred = %ld (%lx hex)\n',
533 NetBootFileXferSize,
534 NetBootFileXferSize);
535 sprintf(buf, '%lX', NetBootFileXferSize);
536 setenv('filesize', buf);
537
538 sprintf(buf, '%lX', (unsigned long)load_addr);
539 setenv('fileaddr', buf);
540 }
541 if (protocol != NETCONS)
542 eth_halt();
543 else
544 eth_halt_state_only();
545
546 eth_set_last_protocol(protocol);
547
548 ret = NetBootFileXferSize;
549 debug_cond(DEBUG_INT_STATE, '--- NetLoop Success!\n');
550 goto done;
551
552 case NETLOOP_FAIL:
553 net_cleanup_loop();
554 /* Invalidate the last protocol */
555 eth_set_last_protocol(BOOTP);
556 debug_cond(DEBUG_INT_STATE, '--- NetLoop Fail!\n');
557 goto done;
558
559 case NETLOOP_CONTINUE:
560 continue;
561 }
562 }
563
564 done:
565 #ifdef CONFIG_CMD_TFTPPUT
566 /* Clear out the handlers */
567 net_set_udp_handler(NULL);
568 net_set_icmp_handler(NULL);
569 #endif
570 return ret;
571 }
函数参数为DNS 352行 初始化网络信息,读取ipaddr、gatewayip、netmask、serverip、dnsip等环境变量的值并复制到对应的全局变量中
static void NetInitLoop(void){ static int env_changed_id; int env_id = get_env_id();
/* update only when the environment has changed */ if (env_changed_id != env_id) { NetOurIP = getenv_IPaddr('ipaddr'); NetOurGatewayIP = getenv_IPaddr('gatewayip'); NetOurSubnetMask = getenv_IPaddr('netmask'); NetServerIP = getenv_IPaddr('serverip'); NetOurNativeVLAN = getenv_VLAN('nvlan'); NetOurVLAN = getenv_VLAN('vlan');#if defined(CONFIG_CMD_DNS) NetOurDNSIP = getenv_IPaddr('dnsip');#endif env_changed_id = env_id; } memcpy(NetOurEther, eth_get_dev()->enetaddr, 6);
return;}
367行 对传入的参数做switch操作,不同的协议进入到不同的处理流程 428行 执行DnsStart(),
197 void
198 DnsStart(void)
199 {
200 debug('%s\n', __func__);
201
202 NetSetTimeout(DNS_TIMEOUT, DnsTimeout);
203 net_set_udp_handler(DnsHandler);
204
205 DnsSend();
206 }
203行 函数net_set_udp_handler()主要将dns协议的回调函数DnsHandler()注册到udp协议的回调指针udp_packet_handler,
void net_set_udp_handler(rxhand_f *f){ debug_cond(DEBUG_INT_STATE, '--- NetLoop UDP handler set (%p)\n', f); if (f == NULL) udp_packet_handler = dummy_handler;//注册到udp协议回调函数指针 else udp_packet_handler = f;}
DnsStart()最终会调用函数DnsSend()发送dns协议数据包,该函数是根据dns协议填充udp数据包
37 static void
38 DnsSend(void)
39 {
40 struct header *header;
41 int n, name_len;
42 uchar *p, *pkt;
43 const char *s;
44 const char *name;
45 enum dns_query_type qtype = DNS_A_RECORD;
46
47 name = NetDNSResolve;
48 pkt = p = (uchar *)(NetTxPacket + NetEthHdrSize() + IP_UDP_HDR_SIZE);
49
50 /* Prepare DNS packet header */
51 header = (struct header *) pkt;
52 header->tid = 1;
53 header->flags = htons(0x100); /* standard query */
54 header->nqueries = htons(1); /* Just one query */
55 header->nanswers = 0;
56 header->nauth = 0;
57 header->nother = 0;
58
59 /* Encode DNS name */
60 name_len = strlen(name);
61 p = (uchar *) &header->data; /* For encoding host name into packet */
62
63 do {
64 s = strchr(name, '.');
65 if (!s)
66 s = name + name_len;
67
68 n = s - name; /* Chunk length */
69 *p++ = n; /* Copy length */
70 memcpy(p, name, n); /* Copy chunk */
71 p += n;
72
73 if (*s == '.')
74 n++;
75
76 name += n;
77 name_len -= n;
78 } while (*s != '\0');
79
80 *p++ = 0; /* Mark end of host name */
81 *p++ = 0; /* Some servers require double null */
82 *p++ = (unsigned char) qtype; /* Query Type */
83
84 *p++ = 0;
85 *p++ = 1; /* Class: inet, 0x0001 */
86
87 n = p - pkt; /* Total packet length */
88 debug('Packet size %d\n', n);
89
90 DnsOurPort = random_port();
91
92 NetSendUDPPacket(NetServerEther, NetOurDNSIP, DNS_SERVICE_PORT,
93 DnsOurPort, n);
94 debug('DNS packet sent\n');
95 }
51~57行 根据dns协议填充dns协议头,数据帧首地址为NetTxPacket,此处通过指针pkt和p来填充dns数据帧 60~85行 根据协议格式要求填充要解析的host名字到数据包 87行 计算数据包长度 90行 产生一个随机的端口号 92~93行 调用udp协议的发送函数NetSendUDPPacket(),参数依次是:以太头信息,DNS服务器 ip地址,DNS服务器端口号,我们的dns服务端口号,数据包长度
688 int NetSendUDPPacket(uchar *ether, IPaddr_t dest, int dport, int sport, 689 int payload_len) 690 { 691 uchar *pkt; 692 int eth_hdr_size; 693 int pkt_hdr_size; 694 695 /* make sure the NetTxPacket is initialized (NetInit() was called) */ 696 assert(NetTxPacket != NULL); 697 if (NetTxPacket == NULL) 698 return -1; 699 700 /* convert to new style broadcast */ 701 if (dest == 0) 702 dest = 0xFFFFFFFF; 703 704 /* if broadcast, make the ether address a broadcast and don't do ARP */ 705 if (dest == 0xFFFFFFFF) 706 ether = NetBcastAddr; 707 708 pkt = (uchar *)NetTxPacket; 709 710 eth_hdr_size = NetSetEther(pkt, ether, PROT_IP); 711 pkt += eth_hdr_size; 712 net_set_udp_header(pkt, dest, dport, sport, payload_len); 713 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 714 715 /* if MAC address was not discovered yet, do an ARP request */ 716 if (memcmp(ether, NetEtherNullAddr, 6) == 0) { 717 debug_cond(DEBUG_DEV_PKT, 'sending ARP for %pI4\n', &dest); 718 719 /* save the ip and eth addr for the packet to send after arp */ 720 NetArpWaitPacketIP = dest; 721 NetArpWaitPacketMAC = ether; 722 723 /* size of the waiting packet */ 724 NetArpWaitTxPacketSize = pkt_hdr_size + payload_len; 725 726 /* and do the ARP request */ 727 NetArpWaitTry = 1; 728 NetArpWaitTimerStart = get_timer(0); 729 ArpRequest(); 730 return 1; /* waiting */ 731 } else { 732 debug_cond(DEBUG_DEV_PKT, 'sending UDP to %pI4/%pM\n', 733 &dest, ether); 734 NetSendPacket(NetTxPacket, pkt_hdr_size + payload_len); 735 return 0; /* transmitted */ 736 } 737 }
696~706行 参数检查 710行 设置以太头 713行 设置udp协议头 716~730行 如果没有目的MAC地址,就要先发送ARP请求 734行 调用函数NetSendPacket(),参数分别是:要发送数据帧的首地址,数据包长度
529 /* Transmit a packet */
530 static inline void NetSendPacket(uchar *pkt, int len)
531 {
532 (void) eth_send(pkt, len);
533 }
532行 调用我们注册的函数dm9000_send() 该函数已经分析过,根据流程图,回到函数NetLoop()
461~562行 循环接收网络数据包 470行 调用网卡驱动接收函数eth_rx()
int eth_rx(void){ if (!eth_current) return -1;
return eth_current->recv(eth_current);}
eth_current->recv(eth_current)函数就是我们注册的网卡的接收函数dm9000_rx(),该函数我们上一章已经分析过,最终通过调用函数NetReceive(),将数据帧上传到协议栈
943 void
944 NetReceive(uchar *inpkt, int len)
945 {
946 struct ethernet_hdr *et;
947 struct ip_udp_hdr *ip;
948 IPaddr_t dst_ip;
949 IPaddr_t src_ip;
950 int eth_proto;
……
957
958 NetRxPacket = inpkt;
959 NetRxPacketLen = len;
960 et = (struct ethernet_hdr *)inpkt;
961
962 /* too small packet? */
963 if (len < ETHER_HDR_SIZE)
964 return;
965
……
984
985 eth_proto = ntohs(et->et_protlen);
986
987 if (eth_proto < 1514) {
988 struct e802_hdr *et802 = (struct e802_hdr *)et;
……
997
998 } else if (eth_proto != PROT_VLAN) { /* normal packet */
999 ip = (struct ip_udp_hdr *)(inpkt + ETHER_HDR_SIZE);
1000 len -= ETHER_HDR_SIZE;
1001
1002 } else { /* VLAN packet */
……
1026 }
1027
……
1045 switch (eth_proto) {
……
1056 case PROT_IP:
1057 debug_cond(DEBUG_NET_PKT, 'Got IP\n');
1058 /* Before we start poking the header, make sure it is there */
1059 if (len < IP_UDP_HDR_SIZE) {
1060 debug('len bad %d < %lu\n', len,
1061 (ulong)IP_UDP_HDR_SIZE);
1062 return;
1063 }
1064 /* Check the packet length */
1065 if (len < ntohs(ip->ip_len)) {
1066 debug('len bad %d < %d\n', len, ntohs(ip->ip_len));
1067 return;
1068 }
1069 len = ntohs(ip->ip_len);
1070 debug_cond(DEBUG_NET_PKT, 'len=%d, v=%02x\n',
1071 len, ip->ip_hl_v & 0xff);
1072
1073 /* Can't deal with anything except IPv4 */
1074 if ((ip->ip_hl_v & 0xf0) != 0x40)
1075 return;
1076 /* Can't deal with IP options (headers != 20 bytes) */
1077 if ((ip->ip_hl_v & 0x0f) > 0x05)
1078 return;
1079 /* Check the Checksum of the header */
1080 if (!NetCksumOk((uchar *)ip, IP_HDR_SIZE / 2)) {
1081 debug('checksum bad\n');
1082 return;
1083 }
1084 /* If it is not for us, ignore it */
1085 dst_ip = NetReadIP(&ip->ip_dst);
1092 /* Read source IP address for later use */
1093 src_ip = NetReadIP(&ip->ip_src);
1184 /*
1185 * IP header OK. Pass the packet to the current handler.
1186 */
1187 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1188 ntohs(ip->udp_dst),
1189 src_ip,
1190 ntohs(ip->udp_src),
1191 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1192 break;
1193 }
1194 }
参数inpkt:指向接收到的以太数据包头 len:接收到的数据包的长度 960行 变量NetRxPacket指向接收的数据头,以太数据包包头比定位以太协议头 985行 从以太协议头提取出协议字段,该字段表示后面是否是ip协议 999行 解析出ip协议头 1045行 根据以太头协议进行switch操作 1059~1083行 对协议头进行合法性检查 1085行 读取出目的ip地址 1093行 读取出源ip地址, 1187行 ip协议头解析成功,调用udp协议回调函数udp_packet_handler(),该函数在之前的DnStart()注册了DnsHandler
104 static void105 DnsHandler(uchar *pkt, unsigned dest, IPaddr_t sip, unsigned src, unsigned len)106 {193 194 net_set_state(NETLOOP_SUCCESS);195 }
该函数用于解析DNS协议,在此不再详解 解析成功后194行,会设置当前执行状态为NETLOOP_SUCCESS, 代码回到函数NetLoop()470行 475行 判断是否按下ctrl+c快捷键,并作出操作 522~562行 对执行结果进行处理,计入统计信息 564行 如果net_state为NETLOOP_SUCCESS、NETLOOP_FAIL最终都会进入done,从而置空udp回调函数 如果net_state为NETLOOP_CONTINUE,表明仍然有后续数据包要接收,则回到461行,继续下一个数据包的接收
至此DNS协议的处理流程分析完毕,大家可以根据这个流程自行分析其他几个协议的处理流程。
容易遇到的问题
有的时候能读取到 DM9000A 的 ID,连续操作就能读取到 DM9000A 的 ID,但间隔一会操作就读取不到 DM9000A 的 ID,通过调试,在 dm9000_reset 函数中加一句延时操作,就可以正常读取 DM9000A 的 ID 了。
277 do {
278 DM9000_DBG('resetting the DM9000, 2nd reset\n');
279 udelay(25); /* Wait at least 20 us */
280 } while (DM9000_ior(DM9000_NCR) & 1);
281 udelay(150);
282 /* Check whether the ethernet controller is present */
283 if ((DM9000_ior(DM9000_PIDL) != 0x0) ||
284 (DM9000_ior(DM9000_PIDH) != 0x90))
285 printf('ERROR: resetting DM9000 -> not responding\n');