基因型的log2ratio测序深度散点图(说明CNV-seq 优于aCGH )
There are 121 CNV calls that made by CNV-seq but not aCGH and overlap with DGV data, suggesting that CNV-seq can detect CNV regions that were missed by aCGH.

The top panel shows a genome level log 2 ratio plot. The middle panel shows the plot for chromosome 10. The bottom panel shows detailed view of a CNV region in chromosome 10.

Read depth ratio between tumor and normal gives information on total copy number. The variant (non-reference) allele frequency at heterozygous loci (germline variant allele frequency greater than 0.25 or less than 0.75) contain information on allelic imbalance. At each position, logR is dened by the log-ratio of total read depth in the tumor versus that in the normal and logOR is dened by the log-odds ratio of the variant allele count in the tumor versus in the normal.
[1] 552672 8
# 也就是拿到552672行信息,如下:
> head(snpm)
CHROM POS gt dp ad gt dp ad
1 chr1 69270 1/1 2 2 1/1 8 8
2 chr1 69398 0/0 6 0 0/0 25 0
3 chr1 69410 0/0 7 0 0/0 25 0
4 chr1 69511 1/1 12 12 1/1 50 50
5 chr1 69849 ./. 0 0 0/0 4 0
6 chr1 69897 0/0 1 0 0/1 8 4
> ## only keep tumor or normal have mutations
> kp=snpm[,3] %in% c('1/1','0/1') | snpm[,6] %in% c('1/1','0/1')
> table(kp)
kp
FALSE TRUE
473593 79056
> snpm=snpm[kp,]
> ## remove those show ./. positions
> kp=snpm[,3] == './.' | snpm[,6]== './.'
> print(table(!kp))
FALSE TRUE
9494 69562
> snpm=snpm[!kp,c(1,2,4,5,7,8)]
> rcmat=snpm
> head(rcmat)
CHROM POS dp ad dp.1 ad.1
1 chr1 69270 2 2 8 8
4 chr1 69511 12 12 50 50
6 chr1 69897 1 0 8 4
33 chr1 942335 4 4 9 9
34 chr1 942402 5 0 13 9
35 chr1 942451 5 5 11 11
> dim(rcmat)
[1] 69562 6
> rcmat=rcmat[rcmat[,5]>10,]
> rcmat$POS=as.numeric(rcmat$POS)
> dim(rcmat)
[1] 13224 6
> rcmat=na.omit(rcmat)
> colnames(rcmat)=c("Chromosome", "Position","NOR.DP","NOR.RD","TUM.DP","TUM.RD")
> rcmat[,1]=gsub('chr','',rcmat$Chrom)
> ## fit segmentation tree
> head(rcmat)
Chromosome Position NOR.DP NOR.RD TUM.DP TUM.RD
4 1 69511 12 12 50 50
49 1 948245 11 11 35 35
91 1 961945 17 17 47 47
110 1 963956 11 6 52 18
143 1 973858 13 13 35 35
144 1 973862 13 6 35 19
> table(rcmat$Chromosome)
1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3
1444 657 768 725 286 408 489 469 588 262 663 1133 256 155 226 777
4 5 6 7 8 9 X
612 660 651 648 463 592 292
plot(rcmat$log2ratio)

赞 (0)