第 111 天:Python 垃圾回收机制

众所周知,Python 是一门面向对象语言,在 Python 的世界一切皆对象。所以一切变量的本质都是对象的一个指针而已。

Python 运行过程中会不停的创建各种变量,而这些变量是需要存储在内存中的,随着程序的不断运行,变量数量越来越多,所占用的空间势必越来越大,如果对变量所占用的内存空间管理不当的话,那么肯定会出现 out of memory。程序大概率会被异常终止。

因此,对于内存空间的有效合理管理变得尤为重要,那么 Python 是怎么解决这个问题的呢。其实很简单,对不不可能再使用到的内存进行回收即可,像 C 语言中需要程序员手动释放内存就是这个道理。但问题是如何确定哪些内存不再会被使用到呢?这就是我们今天要说的垃圾回收了。

目前垃圾回收比较通用的解决办法有三种,引用计数,标记清除以及分代回收。

引用计数

引用计数也是一种最直观,最简单的垃圾收集技术。在 Python 中,大多数对象的生命周期都是通过对象的引用计数来管理的。其原理非常简单,我们为每个对象维护一个 ref 的字段用来记录对象被引用的次数,每当对象被创建或者被引用时将该对象的引用次数加一,当对象的引用被销毁时该对象的引用次数减一,当对象的引用次数减到零时说明程序中已经没有任何对象持有该对象的引用,换言之就是在以后的程序运行中不会再次使用到该对象了,那么其所占用的空间也就可以被释放了了。

我们来看看下面的例子。

import osimport psutil

# 打印当前程序占用的内存大小def print_memory_info(name): pid = os.getpid() p = psutil.Process(pid)
info = p.memory_full_info() MB = 1024 * 1024 memory = info.uss / MB print('%s used %d MB' % (name, memory))
# 测试函数def foo(): print_memory_info("foo start") length = 1000 * 1000 list = [i for i in range(length)] print_memory_info("foo end")

foo()print_memory_info("main end")
### 输出结果foo start used 6 MBfoo end used 55 MBmain end used 10 MB

函数 print_memory_info 用来获取程序占用的内存空间大小,在 foo 函数中创建一个包含一百万个整数的列表。从打印结果我们可以看出,创建完列表之后程序耗用的内存空间上升到了 55 MB。而当函数 foo 调用完毕之后内存消耗又恢复正常。

这是因为我们在函数 foo 中创建的 list 变量是局部变量,其作用域是当前函数内部,一旦函数执行完毕,局部变量的引用会被自动销毁,即其引用次数会变为零,所占用的内存空间也会被回收。

为了验证我们的想法,我们对函数 foo 稍加改造。代码如下:

def foo(): print_memory_info("foo start") length = 1000 * 1000 list = [i for i in range(length)] print_memory_info("foo end") return list
### 输出结果foo start used 6 MBfoo end used 55 MBmain end used 55 MB

稍加改造之后,即使 foo 函数调用结束其所消耗的内存也未被释放。

主要是因为我们将函数 foo 内部产生的列表返回并在主程序中接收之后,这样就会导致该列表的引用依然存在,该对象后续仍有可能被使用到,垃圾回收便不会回收该对象。

那么,什么时候对象的引用次数才会增加呢。下面四种情况都会导致对象引用次数加一。

  • 对象被创建(num=2)
  • 对象被引用(count=num)
  • 对象作为参数传递到函数内部
  • 对象作为一个元素添加到容器中

同理,对象引用次数减一的情况也有四种。

  • 对象的别名被显式销毁(del num)
  • 对象的别名被赋予新的对象(num=30)
  • 对象离开它的作用域(函数局部变量)
  • 从容器中删除对象,或者容器被销毁

引用计数看起来非常简单,实现起来也不复杂,只需要维护一个字段保存对象被引用的次数即可,那么是不是就代表这种算法没有缺点了呢。实则不然,我们知道引用次数为零的对象所占用的内存空间肯定是需要被回收的。那引用次数不为零的对象呢,是不是就一定不能回收呢?

我们来看看下面的例子,只是对函数 foo 进行了改造,其余未做更改。

def foo(): print_memory_info("foo start") length = 1000 * 1000 list_a = [i for i in range(length)] list_b = [i for i in range(length)] list_a.append(list_b) list_b.append(list_a) print_memory_info("foo end") return list
### 输出结果foo start used 6 MBfoo end used 93 MBmain end used 93 MB

我们看到,在函数 foo 内部生成了两个列表 list_a 和 list_b,然后将两个列表分别添加到另外一个中。由结果可以看出,即使 foo 函数结束之后其所占用的内存空间依然未被释放。这是因为对于 list_a 和 list_b 来说虽然没有被任何外部对象引用,但因为二者之间交叉引用,以至于每个对象的引用计数都不为零,这也就造成了其所占用的空间永远不会被回收的尴尬局面。这个缺点是致命的。

为了解决交叉引用的问题,Python 引入了标记清除算法和分代回收算法。

标记清除

显然,可以包含其他对象引用的容器对象都有可能产生交叉引用问题,而标记清除算法就是为了解决交叉引用的问题的。

标记清除算法是一种基于对象可达性分析的回收算法,该算法分为两个步骤,分别是标记和清除。标记阶段,将所有活动对象进行标记,清除阶段将所有未进行标记的对象进行回收即可。那么现在的问题变为了 GC 是如何判定哪些是活动对象的?

事实上 GC 会从根结点出发,与根结点直接相连或者间接相连的对象我们将其标记为活动对象(该对象可达),之后进行回收阶段,将未标记的对象(不可达对象)进行清除。前面所说的根结点可以是全局变量,也可以是调用栈。

标记清除算法主要用来处理一些容器对象,虽说该方法完全可以做到不误杀不遗漏,但 GC 时必须扫描整个堆内存,即使只有少量的非可达对象需要回收也需要扫描全部对象。这是一种巨大的性能浪费。

分代回收

由于标记清除算法需要扫描整个堆的所有对象导致其性能有所损耗,而且当可以回收的对象越少时性能损耗越高。因此 Python 引入了分代回收算法,将系统中存活时间不同的对象划分到不同的内存区域,共三代,分别是 0 代,1 代 和 2 代。新生成的对象是 0 代,经过一次垃圾回收之后,还存活的对象将会升级到 1 代,以此类推,2 代中的对象是存活最久的对象。

那么什么时候触发进行垃圾回收算法呢。事实上随着程序的运行会不断的创建新的对象,同时也会因为引用计数为零而销毁大部分对象,Python 会保持对这些对象的跟踪,由于交叉引用的存在,以及程序中使用了长时间存活的对象,这就造成了新生成的对象的数量会大于被回收的对象数量,一旦二者之间的差值达到某个阈值就会启动垃圾回收机制,使用标记清除算法将死亡对象进行清除,同时将存活对象移动到 1 代。以此类推,当二者的差值再次达到阈值时又触发垃圾回收机制,将存活对象移动到 2 代。

这样通过对不同代的阈值做不同的设置,就可以做到在不同代使用不同的时间间隔进行垃圾回收,以追求性能最大。

事实上,所有的程序都有一个相似的现象,那就是大部分的对象生存周期都是相当短的,只有少量对象生命周期比较长,甚至会常驻内存,从程序开始运行持续到程序结束。而通过分代回收算法,做到了针对不同的区域采取不同的回收频率,节约了大量的计算从而提高 Python 的性能。

除了上面所说的差值达到一定阈值会触发垃圾回收之外,我们还可以显示的调用 gc.collect() 来触发垃圾回收,最后当程序退出时也会进行垃圾回收。

总结

本文介绍了 Python 的垃圾回收机制,垃圾回收是 Python 自带的功能,并不需要程序员去手动管理内存。

其中引用计数法是最简单直接的,但是需要维护一个字段且针对交叉引用无能为力。

标记清除算法主要是为了解决引用计数的交叉引用问题,该算法的缺点就是需要扫描整个堆的所有对象,有点浪费性能。

而分代回收算法的引入则完美解决了标记清除算法需要扫描整个堆对象的性能浪费问题。该算法也是建立在标记清除基础之上的。

最后我们可以通过 gc.collect() 手动触发 GC 的操作。

题外话,如果你看过 JVM 的垃圾回收算法之后会发现 Python 的垃圾回收算法与其是如出一辙的,事实再次证明,程序语言设计时是会相互参考的。

代码地址

示例代码:https://github.com/JustDoPython/python-100-day/tree/master/day-111

(0)

相关推荐

  • 类的进阶

    面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 的使用 类 是一个模板,模板中包装了多个"函数"供使用(可以讲多函数中公用的变量封装到对象中) 对象,根据模板创建的 ...

  • java对象自救

    原文链接:https://blog.csdn.net/HWHuangeian/article/details/49181807 展开全文 打开CSDN,阅读体验更佳 java对象在gc时的自救小dem ...

  • 说说Python中的垃圾回收机制?

    公众号新增加了一个栏目,就是每天给大家解答一道Python常见的面试题,反正每天不贪多,一天一题,正好合适,只希望这个面试栏目,给那些正在准备面试的同学,提供一点点帮助! 小猿会从最基础的面试题开始, ...

  • 准算法工程师从30+场秋招中总结出的超强面经—C、Python与算法篇篇(含答案)

    作者丨灯会 来源丨极市平台 编辑丨极市平台 极市导读 作者灯会为21届中部985研究生,七月份将入职某互联网大厂cv算法工程师.在去年灰飞烟灭的算法求职季中,经过几十场不同公司以及不同部门的面试中积累 ...

  • 面试题-python 垃圾回收机制?

    前言 简历上写着熟悉 python 面试官上来就问:说下python 垃圾回收机制?一盆冷水泼过来,瞬间感觉 python 不香了. Python中,主要通过引用计数(Reference Counti ...

  • PHP垃圾回收机制的一些浅薄理解

    PHP垃圾回收机制的一些浅薄理解 相信只要入门学习过一点开发的同学都知道,不管任何编程语言,一个变量都会保存在内存中.其实,我们这些开发者就是在来回不停地操纵内存,相应地,我们如果一直增加新的变量,内 ...

  • [PHP小课堂]PHP垃圾回收机制的一些浅薄理解

    [PHP小课堂]PHP垃圾回收机制的一些浅薄理解 关注公众号:[硬核项目经理]获取最新文章 添加微信/QQ好友:[xiaoyuezigonggong/149844827]免费得PHP.项目管理学习资料 ...

  • 火山中文编程:012如何删除变量及垃圾回收机制介绍

    第一种方法,鼠标选中需要删除的变量,当鼠标选中后,选中的变量会高亮显示,这时候直接按键盘DELETE键即可快速删除变量,这种方法只有选中变量表格后才能使用,否则无效. 第二种方法删除变量的方法,鼠标放 ...

  • 关于JS垃圾回收机制

    一.垃圾回收机制的必要性 由于字符串.对象和数组没有固定大小,所以当它们的大小已知时,才能对它们进行动态的存储分配.JavaScript程序每次创建字符串.数组或对象时,解释器都必须分配内存来存储那个 ...

  • 浅谈浏览器垃圾回收机制

    javaScriipt 使用垃圾回收机制来自动管理内存 js 的回收机制目前分为两种方式:1.标记清除(各大浏览器主流算法)2.引用技术 一: 标记清除 这种算法的思想是给当前不使用的值加上标记,然后 ...

  • 垃圾回收算法有几种类型? 他们对应的优缺点又是什么?

    常见的垃圾回收算法有: 标记-清除算法.复制算法.标记-整理算法.分代收集算法 标记-清除算法 标记-清除算法包括两个阶段:"标记"和"清除". 标记阶段:确定 ...

  • Go 语言如何实现垃圾回收中的 Stop the World (STW)

    Illustration created for "A Journey With Go", made from the original Go Gopher, created by ...