最新部编本数学中考题库二(应用题)
最新数学中考真题库(应用解答题一)
1.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图①中,画一个直角三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
2.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
部分初三学生每天听空中黔课时间的人数统计表
时间/h |
1.5 |
2 |
2.5 |
3 |
3.5 |
4 |
人数/人 |
2 |
6 |
6 |
10 |
m |
4 |
(1)本次共调查的学生人数为 ,在表格中,m= ;
(2)统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 ;
(3)请就疫情期间如何学习的问题写出一条你的看法.
3.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
4.如图,一次函数y=x 1的图象与反比例函数y的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x 1的图象向下平移2个单位,求平移后的图象与反比例函数y图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y的图象没有公共点.
5.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.
6.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:
(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
(1)求证:AD=CD;
(2)若AB=4,BF=5,求sin∠BDC的值.
9.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
时间x(分钟) |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
9~15 |
人数y(人) |
0 |
170 |
320 |
450 |
560 |
650 |
720 |
770 |
800 |
810 |
810 |
(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
10.如图,四边形ABCD是正方形,点O为对角线AC的中点.
(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是 ,位置关系是 ;
(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.
11.(1)计算(﹣2)2﹣||﹣2cos45° (2020﹣π)0;
(2)先化简,再求值:(),其中a1.
12.规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
13.新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 名;
(2)扇形统计图中表示A级的扇形圆心角α的度数是 ,并把条形统计图补充完整;
(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为 ;
(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.
14.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
15.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
16.已知抛物线y=ax2 bx 6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD PE取最大值时,求点P的坐标;
(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.
参考答案
1.【解答】解:(1)如图①中,△ABC即为所求.
(2)如图②中,△ABC即为所求.
(3)△ABC即为所求.
2.【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),
m=50×44%=22,
故答案为:50,22;
(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,
∵第25个数和第26个数都是3.5h,
∴中位数是3.5h;
∵3.5h出现了22次,出现的次数最多,
∴众数是3.5h,
故答案为:3.5h,3.5h;
(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).
3.【解答】(1)证明:∵∠四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∵BE=CF,
∴BE EC=EC EF,即BC=EF,
∴AD=EF,
∴四边形AEFD是平行四边形;
(2)解:连接DE,如图,
∵四边形ABCD是矩形,
∴∠B=90°,
在Rt△ABE中,AE2,
∵AD∥BC,
∴∠AEB=∠EAD,
∵∠B=∠AED=90°,
∴△ABE∽△DEA,
∴AE:AD=BE:AE,
∴AD10,
∴四边形AEFD的面积=AB×AD=2×10=20.
4.【解答】解:(1)将x=2代入y=x 1=3,故其中交点的坐标为(2,3),
将(2,3)代入反比例函数表达式并解得:k=2×3=6,
故反比例函数表达式为:y①;
(2)一次函数y=x 1的图象向下平移2个单位得到y=x﹣1②,
联立①②并解得:,
故交点坐标为(﹣2,﹣3)或(3,2);
(3)设一次函数的表达式为:y=kx 5③,
联立①③并整理得:kx2 5x﹣6﹣0,
∵两个函数没有公共点,故△=25 24k<0,解得:k,
故可以取k=﹣2(答案不唯一),
故一次函数表达式为:y=﹣2x 5(答案不唯一).
5.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,
画树状图如图:
共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,
∴恰好抽到2张卡片都是《辞海》的概率为;
(2)设应添加x张《消防知识手册》卡片,
由题意得:,
解得:x=4,
经检验,x=4是原方程的解;
答:应添加4张《消防知识手册》卡片.
6.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
∴AG⊥EF,EG∠AEG=∠ACB=35°,
在Rt△AGE中,∠AGE=90°,∠AEG=35°,
∵tan∠AEG=tan35°,EG=6,
∴AG=6×0.7=4.2(米);
答:屋顶到横梁的距离AG为4.2米;
(2)过E作EH⊥CB于H,
设EH=x,
在Rt△EDH中,∠EHD=90°,∠EDH=60°,
∵tan∠EDH,
∴DH,
在Rt△ECH中,∠EHC=90°,∠ECH=35°,
∵tan∠ECH,
∴CH,
∵CH﹣DH=CD=8,
∴8,
解得:x≈9.52,
∴AB=AG BG=13.72≈14(米),
答:房屋的高AB为14米.
7.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:
6x 10(100﹣x)=1300﹣378,
解得x=19.5,
因为钢笔的数量不可能是小数,所以学习委员搞错了;
(2)设笔记本的单价为a元,根据题意,得:
6x 10(100﹣x) a=1300﹣378,
整理,得:x,
因为0<a<10,x随a的增大而增大,所以19.5<x<22,
∵x取整数,
∴x=20,21.
当x=20时,a=4×20﹣78=2;
当x=21时,a=4×21﹣78=6,
所以笔记本的单价可能是2元或6元.
8.【解答】解:(1)证明:∵∠CAD=∠ABD,
又∵∠ABD=∠ACD,
∴∠ACD=∠CAD,
∴AD=CD;
(2)∵AF是⊙O的切线,
∴∠FAB=90°,
∵AB是⊙O的直径,
∴∠ACB=∠ADB=∠ADF=90°,
∴∠ABD ∠BAD=∠BAD ∠FAD=90°,
∴∠ABD=∠FAD,
∵∠ABD=∠CAD,
∴∠FAD=∠EAD,
∵AD=AD,
∴△ADF≌△ADE(ASA),
∴AF=AE,DF=DE,
∵AB=4,BF=5,
∴AF,
∴AE=AF=3,
∵,
∴,
∴DE,
∴BE=BF﹣2DE,
∵∠AED=∠BED,∠ADE=∠BCE=90°,
∴△BEC∽△AED,
∴,
∴,
∴,
∵∠BDC=∠BAC,
∴.
9.【解答】解:(1)由表格中数据的变化趋势可知,
①当0≤x≤9时,y是x的二次函数,
∵当x=0时,y=0,
∴二次函数的关系式可设为:y=ax2 bx,
由题意可得:,
解得:,
∴二次函数关系式为:y=﹣10x2 180x,
②当9<x≤15时,y=180,
∴y与x之间的函数关系式为:y;
(2)设第x分钟时的排队人数为w人,
由题意可得:w=y﹣40x,
①当0≤x≤9时,w=﹣10x2 140x=﹣10(x﹣7)2 490,
∴当x=7时,w的最大值=490,
②当9<x≤15时,w=810﹣40x,w随x的增大而减小,
∴210≤w<450,
∴排队人数最多时是490人,
要全部考生都完成体温检测,根据题意得:810﹣40x=0,
解得:x=20.25,
答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;
(3)设从一开始就应该增加m个检测点,由题意得:12×20(m 2)≥810,
解得m,
∵m是整数,
∴m的最小整数是2,
∴一开始就应该至少增加2个检测点.
10.【解答】解:(1)∵点O为对角线AC的中点,
∴BO⊥AC,BO=CO,
∵P为BC的中点,Q为BO的中点,
∴PQ∥OC,PQOC,
∴PQ⊥BO,PQBO;
故答案为:PQBO,PQ⊥BO.
(2)△PQB的形状是等腰直角三角形.理由如下:
连接O'P并延长交BC于点F,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,
∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,
∴∠O'EP=∠FCP,∠PO'E=∠PFC,
又∵点P是CE的中点,
∴CP=EP,
∴△O'PE≌△FPC(AAS),
∴O'E=FC=O'A,O'P=FP,
∴AB﹣O'A=CB﹣FC,
∴BO'=BF,
∴△O'BF为等腰直角三角形.
∴BP⊥O'F,O'P=BP,
∴△BPO'也为等腰直角三角形.
又∵点Q为O'B的中点,
∴PQ⊥O'B,且PQ=BQ,
∴△PQB的形状是等腰直角三角形;
(3)延长O'E交BC边于点G,连接PG,O'P.
∵四边形ABCD是正方形,AC是对角线,
∴∠ECG=45°,
由旋转得,四边形O'ABG是矩形,
∴O'G=AB=BC,∠EGC=90°,
∴△EGC为等腰直角三角形.
∵点P是CE的中点,
∴PC=PG=PE,∠CPG=90°,∠EGP=45°,
∴△O'GP≌△BCP(SAS),
∴∠O'PG=∠BPC,O'P=BP,
∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,
∴∠O'PB=90°,
∴△O'PB为等腰直角三角形,
∵点Q是O'B的中点,
∴PQO'B=BQ,PQ⊥O'B,
∵AB=1,
∴O'A,
∴O'B,
∴BQ.
∴S△PQBBQ·PQ.
11.【解答】解:(1)原式=421
=41
=5﹣2;
(2)原式=[]·
·
,
当a1时,原式.
12.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,
故选B.
(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).
故答案为(1)(3)(5).
(3)命题中①③正确,
故选C.
(4)图形如图所示:
13.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);
(2)∵A级的百分比为:100%=15%,
∴∠α=360°×15%=54°;
C级人数为:40﹣6﹣12﹣8=14(人).
如图所示:
(3)500×15%=75(人).
故估计优秀的人数为 75人;
(4)画树状图得:
∵共有12种等可能的结果,选中小明的有6种情况,
∴选中小明的概率为.
故答案为:40;54°;75人.
14.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得
,
解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A型车每辆售价为2000元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=(1800﹣1500)a (2400﹣1800)(60﹣a),
y=﹣300a 36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣300a 36000.
∴k=﹣300<0,
∴y随a的增大而减小.
∴a=20时,y有最大值
∴B型车的数量为:60﹣20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
15.【解答】解:(1)连接OD、DB,
∵点E是线段OB的中点,DE⊥AB交⊙O于点D,
∴DE垂直平分OB,
∴DB=DO.
∵在⊙O中,DO=OB,
∴DB=DO=OB,
∴△ODB是等边三角形,
∴∠BDO=∠DBO=60°,
∵BC=OB=BD,且∠DBE为△BDC的外角,
∴∠BCD=∠BDC∠DBO.
∵∠DBO=60°,
∴∠CDB=30°.
∴∠ODC=∠BDO ∠BDC=60° 30°=90°,
∴CD是⊙O的切线;
(2)答:这个确定的值是.
连接OP,如图:
由已知可得:OP=OB=BC=2OE.
∴,
又∵∠COP=∠POE,
∴△OEP∽△OPC,
∴.
16.【解答】解:(1)∵抛物线y=ax2 bx 6经过点A(6,0),B(﹣1,0),
∴,
∴,
∴抛物线的解析式为y=﹣x2 5x 6=﹣(x)2,
∴抛物线的解析式为y=﹣x2 5x 6,顶点坐标为(,);
(2)由(1)知,抛物线的解析式为y=﹣x2 5x 6,
∴C(0,6),
∴OC=6,
∵A(6,0),
∴OA=6,
∴OA=OC,
∴∠OAC=45°,
∵PD平行于x轴,PE平行于y轴,
∴∠DPE=90°,∠PDE=∠DAO=45°,
∴∠PED=45°,
∴∠PDE=∠PED,
∴PD=PE,
∴PD PE=2PE,
∴当PE的长度最大时,PE PD取最大值,
∵A(6,0),C(0,6),
∴直线AC的解析式为y=﹣x 6,
设E(t,﹣t 6)(0<t<6),则P(t,﹣t2 5t 6),
∴PE=﹣t2 5t 6﹣(﹣t 6)=﹣t2 6t=﹣(t﹣3)2 9,
当t=3时,PE最大,此时,﹣t2 5t 6=12,
∴P(3,12);
(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,
∵点F在线段MN的垂直平分线AC上,
∴FM=FN,∠NFC=∠MFC,
∵l∥y轴,
∴∠MFC=∠OCA=45°,
∴∠MFN=∠NFC ∠MFC=90°,
∴NF∥x轴,
由(2)知,直线AC的解析式为y=﹣x 6,
当x时,y,
∴F(,),
∴点N的纵坐标为,
设N的坐标为(m,﹣m2 5m 6),
∴﹣m2 5m 6,解得,m或m,
∴点N的坐标为(,)或(,).