电源接反了烧电路怎么办?电源防反接技术讨论

电子产品要正常工作,就离不开电源。像手机、智能手环这种消费类电子,其充电接口都是标准的接插件,不存在接线的情况,更不会存在电源接反的情况。但是,在工业、自动化应用中,有很多产品是需要手动接线的,即使操作人员做事情再认真,也难免会出错。如果把电源线接反了,可能会导致产品被烧掉。

图1 - 手工接线

那如果在设计产品的时候,就考虑了电源防接反而设计了防接反电路是不是会方便很多呢?今天就来讨论一下如何实现电源防接反,电源防接反的电路有哪些。

1.使用二极管防止电源接反

二极管就有单向导电的特性,在二极管的两端加上合适的正向电压后,二极管导通;而如果加上反向电压后,二极管截止。利用二极管的这个特性可以实现电源的防接反电路,将二极管正向串联在电路中即可。使用二极管搭建的电源防接反电路如图2所示。

图2- 二极管防反接电路

二极管防反接电路分析

将二极管正向串联在电路中,如果电源接线正确的话,PN节正偏使二极管导通,负载得电工作,二极管产生(0.7-3)V的电压降。如果二极管反接的话,PN节处于反偏状态,电阻非常大,电路不通,从而保护了负载的安全。

电路仿真

电路仿真如图3所示,左图电源的接线是正确的,负载LED被点亮;右图电源的接线反了,负载LED不工作。由此可见二极管可以实现电源防反接功能,电源接反后,电路不通,负载不工作,而不会把负载烧坏。

图3 - 电路仿真

二极管防反接电路的优缺点分析

该电路的优点很明显,电路简单,实用性较强,关键成本很低。但是却存在几个缺点,如下:

缺点一,二极管具有正向电压降,压降范围为(0.7-3)V,对于低电压而言可能不适用,分压后可能导致负载电压不够。

缺点二,二极管的耐压很高,但是过电流能力有限,例如4007二极管的最大正向连续电流约为1A。

2.使用P-MOS防止电源接反

MOS管是一种压控型的半导体器件,应用广泛,可以分为P-MOS和N-MOS,具有三个电极,分别为栅极G、漏极D和源极S。可以使用该器件来实现电源的防反接,使用P-MOS实现防反接的电路示意图如图4所示。

图4 - PMOS防反接电路

P-MOS防反接电路分析

P-MOS的导通条件时栅极和源极之间的电压VGS<0时导通,否则截止,利用P-MOS防电源反接时,P-MOS接在高侧,即靠近电源正极一侧。

当电源接线正确时,假设电源电压为U,栅极S为低电平,由于寄生二极管的原因,使得源极S的电位为U-0.7,所以VGS<0,P-MOS管导通,从而使负载得电,电路正常工作。

当电源反接时,栅极S为高电平,VGS>0,所以P-MOS不导通,电路不工作。

P-MOS防反接电路仿真

仿真电路图如图5所示。左图是电源接线正确的电路图,发光二极管被点亮;右图是电源接线错误的电路图,发光二极管不工作。

图5- PMOS仿真电路

P-MOS防反接注意事项/优缺点

P-MOS要接在电源的正极一侧,并且要将寄生二极管正向串联在电路中,其工作原理正是利用了二极管的单向导电特性,这个应用要和P-MOS的开关应用区分开。

其优点就是导通压降小,因为MOS管的导通内阻非常小,所以压降非常小。

3.使用N-MOS防止电源接反

N-MOS防电源反接的电路和P-MOS的工作原理是一样的,只不过N-MOS需要接在电源负极一侧,即低端。N-MOS防反接的电路示意图如图6所示。

图6- NMOS实现电源防反接电路

N-MOS防反接电路分析

N-MOS的导通条件时栅极和源极之间的电压VGS>0时导通,否则截止,利用N-MOS防电源反接时,N-MOS接在低侧,即靠近电源负极一侧。

当电源接线正确时,假设电源电压为U,栅极S为高电平U,由于寄生二极管的原因,使得源极S的电位为0.7,所以VGS>0,N-MOS管导通,从而使负载得电,电路正常工作。

当电源反接时,栅极S为低电平,VGS=0,所以N-MOS不导通,电路不工作。

N-MOS防反接电路仿真

N-MOS仿真电路图如图7所示。左图是接线正确的电路图,右图是接线错误的电路图。接线正确时负载工作,接线错误时电路不通。

图7 - NMOS仿真电路

N-MOS防反接注意事项/优缺点

NMOS需要接在电源的低侧,即靠近负极的一侧,其防止反接的原理与P-MOS防反接原理一致,寄生二极管也是正向串联在电路中,NMOS导通后将寄生二极管短路掉。

其优点,因为MOS管的导通电阻非常小,只有几个mΩ,所以压降非常小。与P-MOS相比,同系列N-MOS的内阻更小。

4.使用整流桥实现电源接线的无极性

除了防反接之外,还可以使用整流桥实现电源的无极性,即电源正接、反接都可以,电路都可以正常工作。

整流桥是由四个二极管所构成的电路,经常用在交流转直流的整流电路中,在交流的每个周期有两个二极管同时导通而另外两个二极管截止,依次轮换。

整流桥仿真电路

整流桥所实现的仿真电路如图8所示。从图8可以看出,不管电源正接还是反接,负载LED都能发光,所以整流桥实现了电源的无极性。

图8 - 整流桥仿真电路

整流桥防反接电路分析

四个二极管组成了整流桥,在不同极性下,只有两个二极管导通工作,另外两个处于截止状态,图8也画出了不同电源接法下,电流的方向,从图中可以看出,只有对桥臂的两个二极管导通,而另外两个二极管截止。这也是整流电路的原理。

整流桥防反接电路优缺点分析

该电路不再对电源的极性有要求,实现了电源的任意接法,这时最大的优点。但缺点是,因为二极管的正向压降,不适用于低电压的电路,而且过电流能力较差。

电源防反接技术总结

上边介绍的几种方案都跟二极管有关系,都是利用了二极管的单向导电特性,但是受限于二极管的正向电流和正向导通压降,不适用于大电流应用和电压较低的应用。

欢迎大家留言评论。

(0)

相关推荐

  • 6种万能MOS管电路分析

    对于MOS管,很多人的印象是模电课本中学到的小信号分析模型,以及各类放大电路.而在实际项目中,MOS管常出现在全桥驱动.全桥逆变.Buck/Boost电路等电路里. 除了上述的应用中,MOS管还有哪些 ...

  • 电源防反接电路设计

    在直流电源系统中,电源的输入端,为了防止电源正负极接反,通常会在输入端对电源进行防反接保护.防反接保护的方法有很多种,今天就来介绍一下. 二极管防反接 利用二极管的单向导通特点实现防反接,这种方式是最 ...

  • (8条消息) 二极管的分类及常用方法

    二极管的分类及常用方法 1.肖特基二极管 1.1概念 一般的PN结二极管是利用N型半导体与P型半导体形成的PN结制作而成. 肖特基二极管(SBD)不是利用P型半导体与N型半导体接触形成PN结原理制作的 ...

  • 电源正负极防反接保护电路

    电源防反接,应该是很多电路场景下都会采取到此系列得设计. 前几日,小白在做单板验证时,在接上假电池然后电源供电时,一不小心将假电池的正负极与供电电源的输入输出接反了,导致单板烧坏,瞬间一缕青烟飘荡在我 ...

  • 硬件开发者之路之:保护电路系列之防反接

    来源:EETOP 行者无疆(论坛usrname:ICNO.1) 的博客 地址:http://www.eetop.cn/blog/?xhsir520 在硬件设计中,关于电路保护的部分是保证系统可靠性的重 ...

  • 电源防反接电路

    硬件工程师的很多项目是在洞洞板上完成的,但有存在不小心将电源正负极接反的现象,导致很多电子元器件都烧毁,甚至整块板子都废掉,还得再焊接一块,不知道有什么好的办法可以解决? 首先粗心不可避免,虽说只是区 ...

  • 我的电动车电源接反了控制器烧了有修的价值吗

    xzwhn 2018-02-19 电动车控制器 以下针对PIC16F72单片机的控制器一.控制器静态电流正常应在50MA内,电机空载最高转速时电流一般在1.4A左右,部分电机在1.8A左右.当控制板不 ...

  • 简单电路实现电源防接反,再也不用挨老板骂了

    我们在使用外接电源类产品时,可能会因一时疏忽将将电源线接反,导致产品被烧坏.从产品的设计角度来讲,如果把电源做成防反接的,那就大大提高了产品的人性化设计.从技术角度来讲,实现电源防反接的技术并不复杂, ...

  • 经典电路之LED电源次级恒流电路

    [导读]其实LED电源的特点就是其需要恒流限压,并且又要长时间工作,所以需要比较高的效率支持,而有些电源对于结构尺寸和高度也有所限制.可以毫不夸张的说,LED驱动电源将直接决定LED灯的可靠性与寿命. ...

  • ADC DAC和RF电路多少电源噪声可以接受?

    从5G到工业应用,随着收集.传送和存储的数据越来越多,也在不断扩大模拟信号处理器件的性能极限,有些甚至达到每秒千兆采样.由于创新的步伐从未放缓,下一代电子解决方案将使解决方案体积进一步缩少,电源效率持 ...

  • 6大常用电源设计电路,电源工程师必备知识宝典

    电子信息技术的飞速发展推动了电源技术这一领域的飞速前进,同时也给电源工程技术人员带来了前所未有的机遇和挑战,小到家用电器,大到大型电力行业所用的仪器设备,无不需要电源来提供能源,这也更需要大量具有电源 ...

  • 电源散热——如何优化电路性能和成本

    注:当产品系统的热量增加时,系统的功耗就会成倍的增加,这样在设计电源系统时,就会选择更加大电流的解决方案,而这样必定会带来成本上的增加,当电流大到一定程度时,成本就会成倍成本的增加. 散热仿真是开发电 ...