Dess-
利用三乙酰氧基高碘烷将醇氧化为相应的羰基化合物的反应。Dess–Martin高碘烷,1,1,1-三乙酰氧基-1,1-二氢-1,2-苯碘酰-3(1H)-酮,是一种非常高效的氧化剂,可以将伯醇和仲醇分别氧化为醛酮。
制备
制备过程中,利用oxone氧化比KBrO3更安全和简单。制备过程中得到的IBX中间体比DMP的爆炸性低很多。
DMP受潮水解得到的邻碘酰基苯甲酸(IBX)是一种氧化性更强的氧化剂。
反应机理
反应实例
非常规的Dess-Martin氧化反应。
参考文献
1. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 41554156. James Cullen (J.C.) Martin (1928-1999) had a distinguished career spanning 36 years both at the University of Illinois at Urbana-Champaign and Vanderbilt University. J. C.’s formal training in physical organic chemistry with Don Pearson at Vanderbilt and P. D. Bartlett at Harvard prepared him well for his early studies on carbocations and radicals. However, it was his interest in understanding the limits of chemical bonding that led to his landmark investigations into hypervalent compounds of the main group elements. Over a 20-year period the Martin laboratories successfully prepared unprecedented chemical structures from sulfur, phosphorus, silicon and bromine while the ultimate “Holy Grail” of stable pentacoordinate carbon remained elusive. Although most of these studies were driven by J. C.’s fascination with unusual bonding schemes, they were not without practical value. Two hypervalent compounds, Martin’s sulfurane (for dehydration) and the Dess-Martin periodinane have found widespread application in synthetic organic chemistry. J. C. Martin and his student Daniel Dess developed this methodology at the University of Illinois at Urbana. (Martin’s biography was kindly supplied by Prof. Scott E. Denmark). 【James Cullen (J.C.) Martin (1928-1999)在伊利诺伊大学香槟分校和范德堡大学的36年时间里取得了辉煌的成绩。他早期在范德堡大学Don Pearson处和哈佛大学P. D. Bartlett 处进行的有关物理有机化学的训练为他以后在碳正离子和自由基方面的研究做了充足的准备。而他对于化学键的兴趣促使他对主族元素的高价化合物进行了里程碑意义的研究。在20年的时间里 Martin 实验室成功的制备了硫,磷,硅和溴的史无前例的化学结构,但终极“圣杯”五配位体碳化合物仍需要进一步研究。尽管大部分的研究都是因为J. C.对于非常规键合的着迷,但这些研究并不是没有实用价值。其中两种高价化合物, Martin硫(用于脱氢反应)和Dess-Martin高碘烷在有机合成中有着广泛的应用。J. C. Martin和他的学生Daniel Dess在伊利诺伊大学香槟分校发现了此种氧化剂。】(b) Dess, D. B.; Martin, J. C. J. Am.Chem. Soc. 1991, 113, 7277-7287.
2. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
3. Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549-7552.
4. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.
5. Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 622-625.
6. Bach, T.; Kirsch, S. Synlett 2001, 1974-1976.
7. Bose, D. S.; Reddy, A. V. N. Tetrahedron 2003, 44, 3543-3545.
8. Tohma, H.; Kita, Y. Adv. Synth. Cat. 2004, 346, 111-124. (Review).
9. Holsworth, D. D. DessMartin oxidation. In Name Reactions for Functional Group Transformations; Li, J. J., Ed.; Wiley: Hoboken, NJ; 2007, pp 218-236. (Review).
10. More, S. S.; Vince, R. J. Med. Chem. 2008, 51, 4581-4588.
11. Crich, D.; Li, M.; Jayalath, P. Carbohydrate Res. 2009, 344, 140-144.
12. Howard, J. K.; Hyland, C. J. T.; Just, J.; J. A. Org. Lett. 2013, 15, 1714–1717.
编译自:J.J. Li, Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, Dess-Martin periodinane oxidation,page 206-208.