EMC静电3000伏,你感觉不到,静电多高才会伤人 | ESD原理及设计要点

1

ESD是怎样产生的?

(1)摩擦、剥离起电:

哪里有运动,哪里就有静电!

(2)感应起电:

感应起电是物体在静电场的作用下,发生了的电荷上再分布的现象。比如:一个设备加电工作的过程中,产生了

一定的电磁场,外围的物体受场的作用会感应出部分电荷,如显示器的屏幕带电现象。而容性起电就比较复杂了,它是由于已经具有一定电荷的带电体在与另一物体靠近、分离时。根据平行板电容公式c= εS/4πkd(S为金属片的正对面积,d为两金属片间的距离)。系统电容发生改变,由Q=CV(C为电容,V为电压)可知,携带一定电量的物体或人体上的静电电位将发生变化,这就会导致集成块等微电子器件的损坏。

利用静电感应原理,使导体带电的过程。A球原不带电,带电的B球使A球电荷发生转移,在接地情况下,经c、e、f等过程使A球带上电荷,谓之感应起电。

(3)电容的改变:

lV=Q/C;lC=εA/d

EDA365电子论坛

2

ESD的特点

干燥环境更易产生静电:

人体对静电的感知:

在3kV时,你能通过皮肤感知;

在5kV时,你能听见;

在10kV时,你能看见。

静电放电的特点:

  • 高电位:数百至数千伏,甚至高达数万至数十万伏;(人体对3kV以下的静电不易感觉到)

  • 低电量:静电多为微安级;(尖端瞬间放电除外)

  • 放电时间短:一般为微妙级;一个ESD瞬态感应电流在小于1ns的时间内就能达到峰值(依据IEC 61000-4-2标准)

  • 受环境影响大:特别是湿度;湿度上升则静电积累减少,静电压下降。

EDA365电子论坛

3

ESD的危害

ESD失效:仿真人体带8kV静电放电,放电3次;放大3000倍。

硬损伤和软损伤:

人体静电可以摧毁任何一个常用半导体器件。(以前实验室发现有人裸手拿板,就发一块坏板,让他维修。)

EDA365电子论坛

4

控制ESD

静电不能被消除,只能被控制。

控制ESD的方法

堵——从机构上做好静电的防护,用绝缘的材料把PCB板密封在外壳内,不论有多少静电都不能到释放到PCB上。

导——有了ESD,迅速让静电导到PCB板的主GND上,可以消除一定能力的静电。

整机级的堵和导

1、外壳和装饰件:金属以及可导电的电镀材料等,属于容易吸引和聚集静电的材料;ESD要求很高的项目要尽可能避免使用这些材料;

2、必须使用导体材料时:结构上要事先预留有效而布局均匀的接地点;一般来说,顶针或者金属弹片的接地效果优于导电泡棉和导电布。

3、无法做接地处理的例如电镀侧键等,需要重点在主板上做特别处理;包括

  • 增加压敏电阻、TVS或者电容等器件;

  • 预留GND管脚;

  • 板边露铜吸引静电放电;

4、外壳上的金属件,距离器件和走线必须大于2.2mm以上距离;

5、堆叠上避免器件裸露于孔、缝边;如果无法避免的话,则要在组装上想办法堵;常见的做法有粘贴高温胶带或者防静电胶带等阻隔;所有结构设计需要留有增加隔离片的空间;

电路板级的堵和导

1、增大PCB板材面积,以增加GND面积,增强其中和静电的能力;成本或者差异化的堆叠让我们做小

2、实在很小的板子,则必须要有至少一层完整的GND层;并且要能够跟电池地脚保持良好的连接;我们常常因为成本无法做到留出完整的地层。

3、很小的电路板,因为电路板的中和电荷能力有限,则要多考虑从整机上堵,少考虑导;

4、器件选择上,要选用高耐ESD的器件;静电保护器件在选择时需要考虑其容性,避免不合适的容性导致其所保护信号线的信号本身的失效;

5、器件摆放时,容易被ESD影响的器件,尽量罩在屏蔽罩中;

6、屏蔽罩必须保证有效而分布均匀的接地!要较为直接的接到主地上,盲孔直接结合埋孔;要四周分布均匀地接地;

7、对IO口和键盘等容易暴露的部分电路,必须增加静电保护器件;

8、器件摆放上,必须遵守就近释放的原则,ESD保护器件应靠近IO和侧键等摆放;其次是跨在中间路上;避免靠近芯片摆放;这样能够减少ESD脉冲信号进入附近线路的瞬态耦合;虽然没有直接的连接,但是这种二次辐射效应也会让其他部分工作紊乱;

9、Layout走线必须遵守有效保护的原则;走线应该从接口处先走到TVS处,然后才能走到CPU等芯片处;远远地“挂”在信号线上的静电保护器件,会因为引线寄生电感过大而导致保护失效,让保护形同虚设。

10、TVS管的接地脚与主地之间的连接必须尽可能的短,减小接地平面的寄生电感。

11、TVS器件应该尽可能靠近连接器以减少进入附近线路的瞬态耦合。虽然没有到达连接器的直接通路,但这种二次辐射效应也会导致电路板其它部分的工作紊乱。

12、避免在板边走重要的信号线;例如时钟、复位信号。

13、主板上未使用的地方尽可能的铺成地;并且连接到主地上;多铺地减小了信号与地之间的间距,相当于减小信号的回路面积;(该面积越大,所包含的场流量越大,其感应电流也越大)

14、需要注意ESD对地层的直接放电有可能损坏敏感电路。在使用TVS二极管的同时还要使用一个或多个高频旁路电容器,这些电容器放置在易损元件的电源和地之间。旁路电容减少了电荷注入,保持了电源与接地端口的电压差。

15、电源走在主板中间比在板边好;地布局在板中间比板边好;

EDA365电子论坛

5

TVS的特性与工作原理

TVS是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。

当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压钳制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。

正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。图中所示为TVS的符号及伏安特性曲线。

USB

对于USB接口的应用,目前在影音及数据处理设备上得到广泛应用。在设计USB电路时,通常都会采用保护电路设计,见下图所示就是一个USB口的保护电路,这个电路中首先误用的就是TVS管。

RS485

RS485作为目前行业内最为最常用的串行差分通讯方式之一,采用平衡发送,差分接收的方式,因此具有抑制共模干扰的能力,由于其具有通讯距离长(1200m以上),传输速率高(10Mbps),高的信噪比,控制方便,成本低,可以在一个单独的总线上实现多节点以及能够使用的收发器品种多等优点,已经越来越得到用户的肯定。

但是伴随着使用频率的增高,其遇到的问题也日益增加。由于RS485通讯传输线通常暴露于户外,日常生活中雷电和静电干扰已经成为RS485通信总线在实际工程经常遇到的问题,RS485收发器的工作电压较低,只有5V,元器件本身的耐压也较低,通常只有-7V~+12V,因此雷电等引入的过电压通常能够瞬间损坏RS485收发器,对通信系统造成遭到严重的毁坏;此外,静电电磁干扰也严重地影响通信总线的数据传输质量。

气体放电管GDT:直流击穿电压大于线路中的正常工作电压,放电管允许的通过电流超过或等于设计通过的最大电流即可。

瞬态抑制二极管TVS:通用信号传输线上TVS的击穿电压VBR应高于信号线上传输的信号电压,在此前提下, VBR应尽可能选得低一些,较低的VBR可使后端通信芯片得到可靠保护,并且具有较大的通流容量。

GDT的选择首先考虑其耐压耐流能力。TVS选择根据芯片的工作电压与耐压决定,一般略高于芯片最高工作电压。

以太网

以太网,室内标准,通过高耐压陶瓷电容,设计吸收电路进行防护。

室外以太网口防护方案的设计思路:

以太网防护方案的设计需要考虑到雷击浪涌以及陶瓷放电管一级防护之后的残压,因此一般会采用GDT在变压器前端做共模 (八线)浪涌防护;并选择结电容低、反应时间快,兼顾防护静电功能的TVS管吸收差模能量。

  • 百兆以太网防护方案(一)

防护电路图:

陶瓷气体放电管:

直流标称电压200±30%V,冲击电流(8/20μs)0.5KA,电容值<0.5pF,电阻>100MΩ。

直流标称电压90±20%V,冲击电流(8/20μs)2.0KA,电容值<1.0pF,电阻>1GΩ。

瞬态抑制二极管TVS管:

TVS【SLUV2.8-4】 Vrwm:2.8V,Vb:3.0V,防静电能力(接触/空气):8KV/15KV,结电容(f=1MHz):2.0pF,封装:SO-08。

  • 百兆以太网防护方案(二)

陶瓷气体放电管:

GDT 直流标称电压200±30%V,冲击电流(8/20μs)0.5KA,电容值<0.5pF,电阻>100MΩ。

GDT直流标称电压90±20%V,冲击电流(8/20μs)2.0KA,电容值<1.0pF,电阻>1GΩ。

瞬态抑制二极管TVS管:

TVSVrwm:3.0V,Vb:4.0V,防静电能力(接触/空气):8KV/15KV,结电容(f=1MHz):1.2pF,封装:SOD-323。

  • 千兆以太网防护方案(一)

陶瓷气体放电管:

GDT直流标称电压200±30%V,冲击电流(8/20μs)0.5KA,电容值<0.5pF,电阻>100MΩ;

GDT直流标称电压90±20%V,冲击电流(8/20μs)2.0KA,电容值<1.0pF,电阻>1GΩ。

瞬态抑制二极管:

TVS Vrwm:2.V,Vb:3.0V,防静电能力(接触/空气):30KV/30KV,结电容(f=1MHz):3.0pF,封装:SOP-08,超低漏电流

  • 千兆以太网防护方案(二)

陶瓷气体放电管:

GDT 直流标称电压200±30%V,冲击电流(8/20μs)0.5KA,电容值<0.5pF,电阻>100MΩ;

GDT 直流标称电压90±20%V,冲击电流(8/20μs)2.0KA,电容值<1.0pF,电阻>1GΩ。

瞬态抑制二极管:

TVS Vrwm:3.0V,Vb:4.0V,防静电能力(接触/空气):8KV/15KV,结电容(f=1MHz):1.2pF,封装:SOD-323。

EDA365电子论坛

6

结束语

EMC问题三要素和了解EMC三个规律,会使得EMC问题变的有规可循,坚持EMC的规律使得解决EMC问题省时省力,事半功倍。

EMC寄语:随着时代的发展,越来越多的电子、电气设备或系统产品都需要进行检验检测,其中EMC测试是必备的检验检测指标之一。但EMC测试项目费用较贵,EMC实验室造价昂贵,绝大部分测量设备又需要采用进口设备,导致很少检验检测机构有能力建造EMC实验室。

产品的EMC性能是设计阶段赋予的,一般电子产品设计时如果不考虑EMC因素,就会很容易导致EMC测试失败,以致不能通过相关EMC法规的测试或认证。

例如,产品设计研发工程师们根据需求,设计出效果良好的滤波电路,置入产品I/O(输入/输出)接口的前级,可使因传导而进入系统的干扰噪声消除在电路系统的入口处;设计出隔离电路(如变压器隔离和光电隔离等)解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;设计出能量吸收回路,从而减少电路、器件吸收的噪声能量;通过选择元器件和合理安排的电路系统,使干扰的影响减少。

01

EMC技能:整改小技巧:

1、150kHz-1MHz,以差模为主,1MHz-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般1MHz以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到Y电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰。

2、保险过后加差模电感或电阻。

3、小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

4、前端的π型EMI零件中差模电感只负责低频EMI,体积别选太大(DR8太大,能用电阻型式或DR6更好)否则幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着线走。

5、传导冷机时在0.15MHz-1MHz超标,热机时就有7dB余量。主要原因是初级BULk电容DF值过大造成的,冷机时ESR比较大,热机时ESR比较小,开关电流在ESR上形成开关电压,它会压在一个电流LN线间流动,这就是差模干扰。解决办法是用ESR低的电解电容或者在两个电解电容之间加一个差模电感。

6、测试150kHz总超标的解决方案:加大X电容看一下能不能下来,如果下来了说明是差模干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下来了说明是共模干扰。如果干扰曲线后面很好,就减小Y电容,看一下布板是否有问题,或者就在前面加磁环。

7、可以加大PFC输入部分的单绕组电感的电感量。

8、PWM线路中的元件将主频调到60kHz左右。

9、用一块铜皮紧贴在变压器磁芯上。

10、共模电感的两边感量不对称,有一边匝数少一匝也可引起传导150kHz-3MHz超标。11、一般传导的产生有两个主要的点:200kHz和20MHz左右,这几个点也体现了电路的性能;200kHz左右主要是漏感产生的尖刺;20MHz左右主要是电路开关的噪声。处理不好变压器会增加大量的辐射,加屏蔽都没用,辐射过不了。

12、将输入BUCk电容改为低内阻的电容。

13、对于无Y-CAP电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕次级。

14、将共模电感上并联一个几k到几十k电阻。

15、将共模电感用铜箔屏蔽后接到大电容的地。

16、在PCB设计时应将共模电感和变压器隔开一点以免互相干扰。

17、保险套磁珠。

18、三线输入的将两根进线接地的Y电容容量从2.2nF减小到471。

19、对于有两级滤波的可将后级0.22uFX电容去掉(有时前后X电容会引起震荡) 。

20、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHz的L通道有干扰,改良方法是将此电容用铜泊包起来屏蔽接到地,或者用一块小的PCB将此电容与变压器和PCB隔开。或者将此电容立起来, 也可以用一个小电容代替。

21、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHz的L通道有干扰,改良方法是将此电容用一个1uF/400V或者说0.1uF/400V电容代替, 将另外一个电容加大。

22、将共模电感前加一个小的几百uH差模电感。

23、将开关管和散热器用一段铜箔包绕起来,并且铜箔两端短接在一起,再用一根铜线连接到地。

24、将共模电感用一块铜皮包起来再连接到地。

25、将开关管用金属套起来连接到地。

26、加大X2电容只能解决150kHz左右的频段,不能解决20MHz以上的频段,只有在电源输入加以一级镍锌铁氧体黑色磁环,电感量约50uH-1mH。

27、在输入端加大X电容。

28、加大输入端共模电感。

29、将辅助绕组供电二极管反接到地。

30、将辅助绕组供电滤波电容改用瘦长型电解电容或者加大容量。

31、加大输入端滤波电容。

32、150kHz-300kHz和20MHz-30MHz这两处传导都不过,可在共模电路前加一个差模电路。也可以看看接地是否有问题,该接地的地方一定要加强接牢,主板上的地线一定要理顺,不同的地线之间走线一定要顺畅不要互相交错的。

33、在整流桥上并电容,当考虑共模成分时,应该邻角并电容,当考虑差模成分时,应该对角并电容。

34、加大输入端差模电感。

02

产品电磁兼容骚扰源有:

1、设备开关电源的开关回路:骚扰源主频几十kHz到百余kHz,高次谐波可延伸到数十MHz。

2、设备直流电源的整流回路:工频线性电源工频整流噪声频率上限可延伸到数百kHz;开关电源高频整流噪声频率上限可延伸到数十MHz。

3、电动设备直流电机的电刷噪声:噪声频率上限可延伸到数百MHz。

4、电动设备交流电机的运行噪声:高次谐波可延伸到数十MHz。

5、变频调速电路的骚扰发射:开关调速回路骚扰源频率从几十kHz到几十MHz。

6、设备运行状态切换的开关噪声:由机械或电子开关动作产生的噪声频率上限可延伸到数百MHz。

7、智能控制设备的晶振及数字电路电磁骚扰:骚扰源主频几十kHz到几十MHz,高次谐波可延伸到数百MHz。

8、微波设备的微波泄漏:骚扰源主频数GHz。

9、电磁感应加热设备的电磁骚扰发射:骚扰源主频几十kHz,高次谐波可延伸到数十MHz。

10电视电声接收设备的高频调谐回路的本振及其谐波:骚扰源主频数十MHz到数百MHz,高次谐波可延伸到数GHz。

11、信息技术设备及各类自动控制设备的数字处理电路:骚扰源主频数十MHz到数百MHz(经内部倍频主频可达数GHz),高次谐波可延伸到十几GHz。

(0)

相关推荐