显微成像技术又出新纪录

Suppose you’d like to take a close look at a fly brain—an extremely close look.

假设你想近距离观察一只苍蝇的大脑——非常近距离的观察。

With a new technique called expansion microscopy, scientists have been doing just that: labeling neurons of interest and tracing their thinnest tendrils to chart their connections.

通过一种叫做扩张显微镜的新技术,科学家们正在做的就是:标记感兴趣的神经元,并追踪它们最细的卷须来绘制它们之间的联系

But the process, which infuses a piece of brain tissue with a gel that swells up to enlarge the details, dramatically increases the time it takes to image that tissue.

但是,在这一过程中将一种凝胶注入一片脑组织,使其膨胀以放大细节,这会大大增加对该组织成像的时间。

And as a microscope beam images parts of this thick sample from top to bottom, it can “burn out” the fluorescent tags attached to proteins that help identify the neurons, making deeper parts of the sample completely dark.

当显微镜从上到下对这种厚样本的部分进行成像时,它可以“烧毁”附着在蛋白质上的荧光标记,这些标记有助于识别神经元,使样本的更深部分完全变暗。

In a new study, researchers present a solution: combining that expansion process with an instrument called a lattice light-sheet microscope, which sweeps an ultrathin sheet of light through the sample.

在一项新的研究中,研究人员提出了一种解决方案:将这种膨胀过程与一种称为点阵薄片显微镜的仪器结合起来。

Because this microscope can linger longer on any area with less intense light than other microscopes, the fluorescence is less likely to burn out and obscure parts of the image—which means that sharp, intricate details, such as the spines on mouse neurons (shown in green, above) can emerge.

由于这种显微镜可以在光线较弱的任何区域停留更长时间,因此荧光不太可能耗尽,图像的某些模糊部分也不太可能消失——这意味着可以出现尖锐、复杂的细节,比如老鼠神经元上的刺(如图绿色所示)。

And by capturing a whole plane at once instead of a set of points, this microscope worked through an entire fly brain (below) in 62.5 hours, roughly seven times faster than the fastest microscope used in such high-resolution imaging to date, the team reports today in Science.

这个研究小组今天在《科学》杂志上报道说,通过一次捕获整个平面而不是一组点,这个显微镜在62.5小时内完成了对整个苍蝇大脑的扫描(下图),大约是迄今为止在这种高分辨率成像中使用的最快显微镜的7倍。

Thanks to sophisticated computational tools that stitch thousands of 3D sections together, the researchers showed they could capture large areas of brain and then zoom in at high resolution.

多亏了复杂的计算工具,将成千上万的3D切片拼接在一起,研究人员展示了他们可以捕捉大脑的大片区域,然后以高分辨率放大。

The approach should make it easier to study how circuits of interacting neurons across the brain drive certain behaviors, and how that circuitry varies across lots of individuals, between sexes, or over the course of development.

这种方法应该能更容易地研究大脑中相互作用的神经元回路如何驱动某些行为,以及该回路如何在许多个体、不同性别或整个发育过程中发生变化。

问题:

在今天文章所介绍的实验技术中,有提到过使用了哪两种动物来进行研究呢?

留言回复正确答案即可获得amber给你准备的红包哦!朋友们快来试试吧!

感谢关注

跟amber一起看世界

(0)

相关推荐