Pandas案例精进 | 自定义截断分组规则

小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题

Pandas案例需求

来自一位群友的需求:

求每个level列等于2之间的level等于1或3的dwell time的和。level列碰到2断开便断开,中间等于1或3的行,对dwell time列聚合求和。

要解决这个问题,只需要自定义分组规则即可。

数据处理流程

首先,我们读取测试数据:

import pandas as pd

df = pd.read_csv('20200922-02.csv')
df

level dwell time dwell time of level 1+3
0 2 7.8750 NaN
1 3 0.9065 NaN
2 2 4.0000 NaN
... ... ... ...
13095 3 2.6250 NaN
13096 1 3.2500 NaN
13097 3 2.2500 NaN

13098 rows × 3 columns

为了排除level等于其他数值的数据的干扰,我们取出只需要处理的数据:

df.query('level in (1,2,3)', inplace=True)
level dwell time dwell time of level 1+3
0 2 7.8750 NaN
1 3 0.9065 NaN
2 2 4.0000 NaN
... ... ... ...
13095 3 2.6250 NaN
13096 1 3.2500 NaN
13097 3 2.2500 NaN

13030 rows × 3 columns

开始计算分组id:

group_ids = []
num = 0
for i, level in df.level.iteritems():
    if level == 2:
        num += 1
        group_ids.append(None)
    else:
        group_ids.append(num)
group_ids[:20]

结果:

[None, 1, None, 2, 2, None, 3, 3, 3, 3, 3, 3, None, 4, 4, None, 5, 5, None, 6]

只需要将不参与分组的对应行置为None即可,最终聚合结果将为空值。

计算结果:

df['dwell time of level 1+3'] = df.groupby(group_ids)['dwell time'].transform('sum')
df

结果:

已经顺利计算出结果,但如果严格要求聚合结果只出现在每组最后一行,计算过程就稍微麻烦一点。

主要是需要在计算分组序号的同时,保存结果行的位置,完整代码如下:

df = pd.read_csv('20200922-02.csv')df.query('level in (1,2,3)', inplace=True)group_ids = []mask = []num = 0last_i, last_level = -1, 2for i, level in df.level.iteritems():    if level == 2:        num += 1        group_ids.append(None)        if last_level != 2:            mask.append(last_i)    else:        group_ids.append(num)    last_i, last_level = i, levelif last_level != 2:    mask.append(last_i)df.loc[mask,'dwell time of level 1+3'] = df.groupby(group_ids)['dwell time'].sum().valuesdf

如果要求保留level不在[1,2,3]范围的行,可以先只对在[1,2,3]范围行进行计算,最终对原始数据进行赋值。

完整代码如下:

df = pd.read_csv('20200922-02.csv')
tmp = df.query('level in (1,2,3)')
group_ids = []
mask = []
num = 0
last_i, last_level = -1, 2
for i, level in tmp.level.iteritems():
    if level == 2:
        num += 1
        group_ids.append(None)
        if last_level != 2:
            mask.append(last_i)
    else:
        group_ids.append(num)
    last_i, last_level = i, level
if last_level != 2:
    mask.append(last_i)
df.loc[mask, 'dwell time of level 1+3'] = tmp.groupby(group_ids)['dwell time'].sum().values
df

欢迎你在下方评论区留言,发表你的看法,给大家分享和互动!

如果大家喜欢我的文章,请动动你的小手,点个赞吧~

(0)

相关推荐