人工智能学习路线,文末赠书活动(深度学习Spark机器学习)

程序IT圈

现在人工智能,机器学习这么火热,很多人想入门却不知道要从哪里入门,从哪里开始学习,该学习些什么内容,下面是我以前看过的一篇关于机器学习的学习入线文章,可能可以帮助到你入门人工智能领域 。

另外本次文末机械工业出版社华章分社闫老师提供给本公众号五本技术图书《深度学习Spark机器学习》,免费赠送给大家!

第一课:机器学习的数学基础

1.  机器学习的数学基础

a. 函数与数据的泛化

b. 推理与归纳 (Deduction and Induction)

2. 线性代数(Linear Algebra)

a. 向量与矩阵 (Vector and Matrix)

b. 特征值与特征向量

c. 向量与高维空间

d. 特征向量(Feature Vector)

3.  概率与统计(Probability and Statistics)

a. 条件概率与经典问题 (Conditional Probability)

b. 边缘概率 (Marginal Probability)

4.  作业/实践: 财宝问题的概率计算程序

第二课:机器学习的数学基础

1.  统计推理(Statistical Inference)

a. 贝叶斯原理与推理 (Bayesian Theorem)

b. 极大似然估计 (Maximum Likelihood)

c. 主观概率(Subjective Probability)

d. 最大后延概率(MAP)

2.  随机变量(Random Variable)

a. 独立与相关 (Independence)

b. 均值与方差 (Mean and Variance)

c. 协方差 (Co-Variance)

3.  概率分布(Probability Distributions)

4.  中心极限定理(Central Limit Theorem)

5.  作业/实践: 概率分布采样与不同随机变量之间协方差计算

第三课:机器学习的数学基础

1.  梯度下降(Gradient Descent)

a. 导数与梯度(Derivative and Gradient)

b. 随机梯度下降(SGD)

c. 牛顿方法(Newton's Method)

2.  凸函数(Convex Function)

a. Jensen不等式(Jensen's Inequality)

b. 拉格朗日乘子(Lagrange Multiplier)

3.  作业/实践: 利用牛顿方法求解给定的方程

第四课:机器学习的哲学(Philosophy of ML)

1.  算法的科学(Science of Algorithms)

a. 输入与输出的神话(Mystery of I/O)

b. 奥卡姆剃刀(Occam’s Razor)

2.  维数的诅咒(Curse of Dimensionality)

a. 高维的几何特性 (Geometric Properity )

b. 高维空间流形(High-dimensional Manifold)

3.  机器学习与人工智能(Machine learning and AI)

4.  机器学习的范式(Paradigms of ML)

第五课:经典机器学习模型(Classical ML Models)

1.  样本学习(Case-Based Reasoning)

a. K-近邻(K-Nearest Neighbors)

b. K-近邻预测(KNN for Prediction)

c. 距离与测度(Distance and Metric)

2.  朴素贝叶斯(Naïve Bayes Classifier)

a. 条件独立(Conditional Independence)

b. 分类(Naive Bayes for Classification)

3.  作业/实践:垃圾邮件分类的案例

第六课:经典机器学习模型(Classical ML Models)

1.   决策树(Decision Tree Learning)

a. 信息论与概率

b. 信息熵(Information Entropy)

c. ID3, CART算法

2.  决策树剪枝(Pruning)

3.  软决策树(Soft Decision Tree)

4.  决策树与规则(DT and Rule Learning)

5.  作业/实践:决策树分类实验

第七课:经典机器学习模型(Classical ML Models)

1.  集成学习(Ensemble learning)

a. Bagging and Boosting

b. AdaBoost

c. 误差分解(Bias-Variance Decomposition)

d. 随机森林(Boosting and Random Forest)

2. 模型评估(Model Evaluation)

a. 交叉验证(Cross-Validation)

b. ROC (Receiver Operating Characteristics)

c. Cost-Sensitive Learning

3.  作业/实践:随机森林与决策树分类实验的比较

第八课:线性模型(Linear Models)

1.  线性模型(Linear Models)

a. 线性拟合(Linear Regression)

2.  最小二乘法(LMS)

b. 线性分类器(Linear Classifier)

3.  感知器(Perceptron)

4.  对数几率回归(Logistic Regression)

5.  线性模型的概率解释 (Probabilistic Interpretation)

6.  作业/实践:对数几率回归的文本情感分析中应用

第九课:线性模型(Linear Models)

1.  线性判别分析 (Linear Discrimination Analysis)

2.  约束线性模型 (Linear Model with Regularization)

a. LASSO

b. Ridge Regression

3.  稀疏表示与字典学习

a. Sparse Representation & Coding

b. Dictionary Learning

第十课:核方法(Kernel Methods)

1.  支持向量机SVM(Support Vector Machines)

a. VC-维(VC-Dimension)

b. 最大间距(Maximum Margin)

c. 支撑向量(Support Vectors)

2.  作业/实践:SVM不同核函数在实际分类中比较

第十一课:核方法(Kernel Methods)

1.  对偶拉格朗日乘子

2.  KKT条件(KKT Conditions)

3.  Support Vector Regression (SVR)

4.  核方法(Kernel Methods)

第十二课:统计学习(Statistical Learning)

1.  判别模型与生成模型

a. 隐含变量(Latent Variable)

2.  混合模型(Mixture Model)

a. 三枚硬币问题(3-Coin Problem)

b. 高斯混合模型(Gaussian Mixture Model)

3.  EM算法(Expectation Maximization)

a. 期望最大(Expectation Maximization)

b. 混合模型的EM算法(EM for Mixture Models)

c. Jensen 不等式 (Jensen's Inequality)

d. EM算法推导与性能 (EM Algorithm)

第十三课:统计学习(Statistical Learning)

1.  隐马可夫模型(Hidden Markov Models)

a. 动态混合模型(Dynamic Mixture Model)

b. 维特比算法(Viterbi Algorithm)

c. 算法推导 (Algorithm)

2.  条件随机场(Conditional Random Field)

第十四课:统计学习(Statistical Learning)

1.  层次图模型(Hierarchical Bayesian Model)

a. 概率图模型 (Graphical Model)

b. 从隐含语义模型到p-LSA (From LSA to P-LSA)

c. Dirichlet 分布与特点(Dirichlet Distribution)

d. 对偶分布(Conjugate Distribution)

第十五课:统计学习(Statistical Learning)

1.  主题模型(Topic Model – LDA)

a. Latent Dirichlet Allocation

b. 文本分类(LDA for Text Classification)

2.  中文主题模型(Topic Modeling for Chinese)

3.  其他主题模型(Other Topic Variables)

第十六课:无监督学习(Unsupervised Learning)

1.  K-均值算法(K-Means)

a. 核密度估计(Kernel Density Estimation)

b. 层次聚类(Hierarchical Clustering)

2.  蒙特卡洛(Monte Carlo)

a. 蒙特卡洛树搜索(Monte Carol Tree Search)

b. MCMC(Markov Chain Monte Carlo)

c. Gibbs Sampling

第十七课:流形学习(Manifold Learning)

1.  主成分分析(PCA)

a. PCA and ICA

2.  低维嵌入(Low-Dimensional Embedding)

a. 等度量映射(Isomap)

b. 局部线性嵌入(Locally Linear Embedding)

第十八课:概念学习(Concept Learning)

1.  概念学习(Concept Learning)

a. 经典概念学习

b. One-Short概念学习

2.  高斯过程学习(Gaussian Process for ML)

c. Dirichlet Process

第十九课:强化学习(Reinforcement Learning)

1.  奖赏与惩罚(Reward and Penalty)

a. 状态空间 (State-Space Model)

b. Q-学习算法 (Q-Learning)

2.  路径规划 (Path Planning)

3.  游戏人工智能 (Game AI)

4.  作业/实践:小鸟飞行游戏的自动学习算法

第二十课:神经网络

1.  多层神经网络

a. 非线性映射(Nonlinear Mapping)

b. 反向传播(Back-propagation)

2.  自动编码器(Auto-Encoder)

机器学习路线完~~

接下来介绍一下,本次送书的主角《深度实践Spark机器学习》。系统讲解Spark机器学习的技术、原理、算法和组件,以及构建Spark机器学习系统的方法、流程、标准和规范。

本书以新的Spark2.0为技术基础,重点讲解了如何构建机器学习系统以及如何实现机器学习流程的标准化,这两点都是目前同类书中没有的。第1~7章从概念、架构、算法等角度介绍了机器学习的基本概念;第8~12章以实例为主,详细讲解了机器学习流程标准化涉及的关键技术;第13章主要以在线数据或流式数据为主介绍了流式计算框架SparkStreaming;第14章重点讲解了深度学习的框架TensorFlowOnSprak。此外,附录部分提供了线性代数、概率统计及Scala的基础知识,帮助读者更好地学习和掌握机器学习的相关内容。

这一次出版社一共赞助了5本书,暂时没办法惠及到所有的读者朋友们,只好按照 2+2+1 的规则来分配。获奖的读者可以从获得该书,不得重复中奖 。活动规则如下:

送书 活动一
(0)

相关推荐