小小涂布,大大学问

目前,电动车、储能电池等新能源产业在全球范围内发展迅速。作为公认的理想储能元件,动力锂电池也得到高度关注。涂布机是动力锂电池极片的生产关键工艺设备。目前,锂电池极片涂布工艺主要有刮刀式、辊涂转移式和狭缝挤压式等。一般实验室设备采用刮刀式,3C电池采用辊涂转移式,而动力电池多采用狭缝挤压式。

涂布工艺对锂电池性能的影响

浆料作为涂布工序的来料,其特性直接影响涂布质量。通过浆料构成我们可以知道浆料属于固液两相流体。生产上对浆料质量控制点主要有粘度、固含量、密度、细度和PH值。浆料的均匀一致性对于涂布工艺环节至关重要,检验浆料均匀一致性可通过检测不同区域浆料的质量控制点获取。涂布的效果对电池容量、内阻、循环寿命以及安全性有重要影响,保证极片均匀涂布。涂布方式的选择和控制参数对锂离子电池性能的有重要影响,主要表现在:

1)涂布干燥温度控制:若涂布时干燥温度过低,则不能保证极片完全干燥,若温度过高,则可能因为极片内部的有机溶剂蒸发太快,极片表面涂层出现龟裂、脱落等现象;

2)涂布面密度:若涂布面密度太小,则电池容量可能达不到标称容量,若涂布面密度太大,则容易造成配料浪费,严重时如果出现正极容量过量,由于锂的析出形成锂枝晶刺穿电池隔膜发生短路,引发安全隐患;

3)涂布尺寸大小:涂布尺寸过小或者过大可能导致电池内部正极不能完全被负极包住,在充电过程中,锂离子从正极嵌出来,移动到没有被负极完全包住的电解液中,正极实际容量不能高效发挥,严重的时候,在电池内部会形成锂枝晶,容易刺穿隔膜导致电池内部电路;

4)涂布厚度:涂布厚度太薄或者太厚会对后续的极片轧制工艺产生影响,不能保证电池极片的性能一致性。

另外极片涂布对电池的安全性有重要意义。涂布之前要做好5S工作,确保涂布过程中没有颗粒、杂物、粉尘等混入极片中,如果混入杂物会引起电池内部微短路,严重时导致电池起火爆炸。

常见的涂布方式

涂布机是前段工序的核心设备。涂布机经历了三种结构类型的演化,依次是刮刀式、转移式、狭缝挤压式涂布。刮刀式主要应用于实验室条件下;转移式涂布主要应用于3C电池的生产;狭缝式挤压涂布主要应用于动力电池,近几年该类型由于动力电池生产需求的爆发而快速增加。挤压涂布技术作为这三种中最先进的技术,可以用于较高粘度流体涂布,获得较高精度的涂层。将涂布机的结构分拆来看,涂布头的设计对涂布精度有极为重要的影响,这类高精度控制的核心零部件尚需要进口。涂布机当前的国产化率较高,达到70%-80%以上,但高端产品的涂布头仍主要有国外提供,如龙头新嘉拓的涂布头曾主要由松下提供。

涂布机设备

涂布机设备的技术先进程度主要考察四个方面:涂布技术,张力技术,纠偏技术,干燥技术。涂布技术需要满足不同厚度的生产要求,现在正极锂电铝箔厚度已经薄至6-8微米,负极锂电铜箔厚度已经薄至4.5-6微米,隔膜涂布也只有几个微米,石墨烯涂布甚至更薄,不同的厚度还需要针对客户开发不同的涂布方法,保证对浆料的涂布厚度精度控制在2微米以下。张力技术,由于幅材沿着涂布方向运动不可避免地出现张力不均匀状态,导致涂布质量缺乏一致性,因此需要确保片路运行过程中各段均有良好的张力控制。纠偏技术,由于涂布设备长度多在数十米,片路运行过程中会出现位置偏差,为了保证无论是铜膜铝膜还是很薄的隔膜都能在片路上平稳有效地运行,并实现精密涂布,需要选用不同的驱动形式配合响应的控制系统来纠偏。干燥技术,涂布生产的速度瓶颈在于烘干干燥,最直接的手段是加长风箱,但会带来成本和占地增加,加强之后还需要增强纠偏和张力控制,要想进一步改善干燥效率就需要改进风场的控制,温度场的控制,布局形式,尽量在保证涂布速度的情况下减小风箱长度。

涂布效率是领先企业进一步比拼技术实力的重要标准。当前领先的涂布机设备在保证上述技术的前提下,主攻提升涂布效率,主要的手段包括提升涂布机运行速度和涂布宽度,领先企业的涂布速度能达到120m/min,涂布宽幅达1400mm。

影响涂布质量因素

影响涂布质量的因素较多,人、机、料、法、环各方面都存在,但基本因素是与涂布过程直接相关的几个条件:涂布基材、胶黏剂、涂布钢辊/胶辊和复合机等。

1)涂布基材:主要是材质、表面特性、厚度及其均匀性等。

2)胶黏剂:主要是其工作粘度、对基材表面的亲和力和附着力等。

3)涂布钢辊:它既是胶黏剂的直接载体,又是涂布基材和胶辊的支撑基准,因此它是整个涂布机构的核心。其形位公差、刚性、动静平衡质量、表面质量、温度均匀性和受热变形状况等都影响到涂布的均匀性。

4)涂布胶辊:胶辊是指涂布质量的一个重要变量,其材质(如胶层寿命)、硬度、形位公差、刚性、动静平衡质量、表面质量、受热变形状况等也都影响到涂布的均匀性。

5)复合机:是涂布的基础平台,除了涂布钢辊和胶辊合压机构的精度和灵敏度外,还包括设计运行最高速度、机器的整体稳定性等。

涂布均匀性在横向和纵向上的影响因素是不同的,因此其控制措施也相应地有所不同。而在具体实施时,既与机器的设计制造有关,也与操作和工艺控制有关。

极片涂布中问题及解决方法

在极片涂布中,常出现的问题包括原料污染、涂布工艺不稳定、操作不规范、干燥程序设置错误等,而这些问题又会造成极片出现或多或少的缺陷,如点状缺陷、厚边缺陷等。

点状缺陷主要来自于浆料内气泡和混入的异物。气泡可以来自搅拌中脱泡未完全、供料工作过程中或者涂布过程中,异物主要来自于操作时的失误或环境问题。在极片涂布过程中,浆料内部气泡喷涂在极片上,经过烘箱烘干时,气泡破裂,在极片上形成白色圆斑。而这些活物质涂层较薄,在电池充放电过程中容易造成微短路。此外,极片中有异物存在时,颗粒周围涂膜处是低表面张力区域,液膜向周围呈发射状迁移,形成点状缺陷。

为防止此类缺陷的出现,可以通过控制操作环境、优化浆料搅拌、控制涂布速度、保证基材干净等措施来解决。厚边缺陷是指,极片在辊压过程中,厚边承受更大的压力,不仅造成极片在横向密度上不同,也会造成厚边处活物质颗粒被碾碎。存在厚边缺陷的极片经过压制后,会出现较严重的翘曲现象,对后续的分切、卷绕过程中也会有很大的影响。

厚边处活物质颗粒被碾碎后,在充放电过程中锂离子和电子的传输路径变远,就会导致电池内阻增大极化加深,影响电池的使用寿命和安全。

此外,析锂和微短路对电池性能也是极为不利的。产生厚边的主要原因是浆料表面张力的驱使,使浆料向极片边缘无涂覆处迁移,烘干后形成厚边。

电池极片干燥过程示意图(网络图片)

研究表明,涂布速度对边缘宽度和高度无显著影响,边缘梯度随着涂布速度增加而增大,减小间隙比,可以降低边缘效应。

此外,相关间隙涂布研究表明,通过调整涂布间隙、压力预调整也可以降低厚边,利用添加界面活性剂降低浆料表面张力的方法也能在一定程度上减少厚边的发生。据了解,极片涂布设备主要由收放卷单元、供料单元、张力控制系统、涂布机头、烘箱等部分组成。

第六届国际碳材料大会暨产业展览会

碳基储能高峰论坛

2021.11.18-20日 上海跨国采购会展中心

组织机构

主办单位:DT 新材料

承办单位:宁波德泰中研信息科技有限公司

合作媒体:DT 新材料、Carbontech、DT 新能源、Carbon energy、仪器信息网

合作期刊:Carbon energy

论坛主席

邱介山:北京化工大学教授,化学工程学院院长

阮殿波:宁波大学教授,俄罗斯自然科学院院士

报告形式

主旨报告,邀请报告,申请报告,口头报告

论坛规划

(0)

相关推荐