用 Python 来了解一下《安家》
如果要选一部近期最火的电视剧,一定非《安家》莫属,你可能没有具体看过,但如果你看微博的话一定听过这个名字,这部电视剧多次登上微博热搜榜,好像还有几次冲上了热搜榜首,该剧主要讲述的是关于房产中介卖房的故事,电视剧原名也是叫卖房子的人。
使用 Python 分析这部电视剧,主要包括两个步骤:获取数据和分析数据,数据来源我们选取《安家》的豆瓣评论区数据。
获取数据
豆瓣中《安家》的地址是:https://movie.douban.com/subject/30482003/
,我们打开看一下,如下图所示:
从图中我们可以直观的看出截止目前有 9 万多人进行了打分,从评分上来看,打三星和四星的人数居多,总体评分 6.2 属于及格分,算是中规中矩吧。
我们把页面向下拉到评论区位置,如下图所示:
我们可以看到目前有 3 万多条评论数据,豆瓣对查看评论数据的限制是:未登录时最多可以查看 200 条,登录用户最多可以查看 500 条,也就是说我们最多可以抓取 500 条评论相关的信息,我们要抓取的数据项包括:用户昵称、星级、评论时间、评论内容,将这些信息抓取后我们再将其存到 csv 文件,代码实现如下:
import requests, time, random, pandas as pd
from lxml import etree
def spider():
url = 'https://accounts.douban.com/j/mobile/login/basic'
headers = {"User-Agent": 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)'}
# 安家评论网址,为了动态翻页,start 后加了格式化数字,短评页面有 20 条数据,每页增加 20 条
url_comment = 'https://movie.douban.com/subject/30482003/comments?start=%d&limit=20&sort=new_score&status=P'
data = {
'ck': '',
'name': '自己的用户',
'password': '自己的密码',
'remember': 'false',
'ticket': ''
}
session = requests.session()
session.post(url=url, headers=headers, data=data)
# 初始化 4 个 list 分别存用户名、评星、时间、评论文字
users = []
stars = []
times = []
content = []
# 抓取 500 条,每页 20 条,这也是豆瓣给的上限
for i in range(0, 500, 20):
# 获取 HTML
data = session.get(url_comment % i, headers=headers)
# 状态码 200 表是成功
print('第', i, '页', '状态码:',data.status_code)
# 暂停 0-1 秒时间,防止 IP 被封
time.sleep(random.random())
# 解析 HTML
selector = etree.HTML(data.text)
# 用 xpath 获取单页所有评论
comments = selector.xpath('//div[@class="comment"]')
# 遍历所有评论,获取详细信息
for comment in comments:
# 获取用户名
user = comment.xpath('.//h3/span[2]/a/text()')[0]
# 获取评星
star = comment.xpath('.//h3/span[2]/span[2]/@class')[0][7:8]
# 获取时间
date_time = comment.xpath('.//h3/span[2]/span[3]/@title')
# 有的时间为空,需要判断下
if len(date_time) != 0:
date_time = date_time[0]
else:
date_time = None
# 获取评论文字
comment_text = comment.xpath('.//p/span/text()')[0].strip()
# 添加所有信息到列表
users.append(user)
stars.append(star)
times.append(date_time)
content.append(comment_text)
# 用字典包装
comment_dic = {'user': users, 'star': stars, 'time': times, 'comments': content}
# 转换成 DataFrame 格式
comment_df = pd.DataFrame(comment_dic)
# 保存数据
comment_df.to_csv('data.csv')
# 将评论单独再保存下来
comment_df['comments'].to_csv('comment.csv', index=False)
分析数据
现在数据取到了,我们使用 Python 来对这些数据进行分析一下。
评论数量
首先,我们来统计一下这 500 条数据每天的评论数量,然后利用折线图进行数据展示,代码实现如下:
import pandas as pd, matplotlib.pyplot as plt
csv_data = pd.read_csv('data.csv')
df = pd.DataFrame(csv_data)
df_gp = df.groupby(['time']).size()
values = df_gp.values.tolist()
index = df_gp.index.tolist()
# 设置画布大小
plt.figure(figsize=(10, 6))
# 数据
plt.plot(index, values, label='评论数')
# 设置数字标签
for a, b in zip(index, values):
plt.text(a, b, b, ha='center', va='bottom', fontsize=13, color='black')
plt.title('评论数随时间变化折线图')
plt.xticks(rotation=330)
plt.tick_params(labelsize=10)
plt.ylim(0, 200)
plt.legend(loc='upper right')
plt.show()
看一下效果图:
从图中我们可以看出 2 月 21、22 这两天评论数最多,其中 2 月 21 号为开播日,评论数较多很正常, 2 月 22 号评论数多于开播日,我们大致可以推测是开播后网络等渠道进一步扩散的因素,之后随着时间的推移热度有所下降,评论数量呈下降至相对平稳的趋势。
角色分析
我们接着统计评论区中几个主要角色被提及的次数,然后再利用柱状图进行数据展示,代码实现如下所示:
import pandas as pd, jieba, matplotlib.pyplot as plt
csv_data = pd.read_csv('data.csv')
roles = {'姑姑':0, '房似锦':0, '王子':0, '闪闪':0, '老油条':0, '楼山关':0, '鱼化龙':0}
names = list(roles.keys())
for name in names:
jieba.add_word(name)
for row in csv_data['comments']:
row = str(row)
for name in names:
count = row.count(name)
roles[name] += count
plt.figure(figsize=(8, 5))
# 数据
plt.bar(list(roles.keys()), list(roles.values()), width=0.5, label='提及次数', color=['g', 'r', 'dodgerblue', 'c', 'm', 'y', 'aquamarine'])
# 设置数字标签
for a, b in zip(list(roles.keys()), list(roles.values())):
plt.text(a, b, b, ha='center', va='bottom', fontsize=13, color='black')
plt.title('角色被提及次数柱状图')
plt.xticks(rotation=270)
plt.tick_params(labelsize=10)
plt.ylim(0, 30)
plt.legend(loc='upper right')
plt.show()
看一下效果图:
我们从角色被提及的次数可以大致推测出角色的受欢迎程度。
星级变化
我们接着根据获取数据来看一下这几天星级变化的大致趋势,一天中如果有多条星评我们取其平均值即可,代码实现如下所示:
import pandas as pd, numpy as np, matplotlib.pyplot as plt
csv_data = pd.read_csv('data.csv')
df_time = csv_data.groupby(['time']).size()
df_star = csv_data.groupby(['star']).size()
index = df_time.index.tolist()
value = [0] * len(index)
# 生成字典
dic = dict(zip(index, value))
for k, v in dic.items():
stars = csv_data.loc[csv_data['time'] == str(k), 'star']
# 平均值
avg = np.mean(list(map(int, stars.values.tolist())))
dic[k] = round(avg ,2)
# 设置画布大小
plt.figure(figsize=(9, 6))
# 数据
plt.plot(list(dic.keys()), list(dic.values()), label='星级')
plt.title('星级随时间变化折线图')
plt.xticks(rotation=330)
plt.tick_params(labelsize=10)
plt.ylim(0, 5)
plt.legend(loc='upper right')
plt.show()
看一下效果图:
从现有数据来看,《安家》的星级整体维持在 2 星左右,我们可以发现尽管该剧比较热,但观众对该剧的满意并不是很高。
词云展示
最后,我们对所有评论进行词云效果展示,这样可以让我们更加直观的看出评论区哪些词汇出现的频率较高,实现代码如下所示:
from wordcloud import WordCloud
import numpy as np, jieba
from PIL import Image
def jieba_():
# 打开评论数据文件
content = open('comment.csv', 'rb').read()
# jieba 分词
word_list = jieba.cut(content)
words = []
# 过滤掉的词
remove_words = ['以及', '不会', '一些', '那个', '只有',
'不过', '东西', '这个', '所有', '这么',
'但是', '全片', '一点', '一部', '一个',
'什么', '虽然', '一切', '样子', '一样',
'只能', '不是', '一种', '这个', '为了']
for word in word_list:
if word not in remove_words:
words.append(word)
global word_cloud
# 用逗号隔开词语
word_cloud = ','.join(words)
def cloud():
# 打开词云背景图
cloud_mask = np.array(Image.open('bg.jpg'))
# 定义词云的一些属性
wc = WordCloud(
# 背景图分割颜色为白色
background_color='white',
# 背景图样
mask=cloud_mask,
# 显示最大词数
max_words=100,
# 显示中文
font_path='./fonts/simhei.ttf',
# 最大尺寸
max_font_size=80
)
global word_cloud
# 词云函数
x = wc.generate(word_cloud)
# 生成词云图片
image = x.to_image()
# 展示词云图片
image.show()
# 保存词云图片
wc.to_file('anjia.png')
jieba_()
cloud()
看一下效果图:
总结
本文通过爬取豆瓣中《安家》的评论区数据并对其进行可视化,我们可以大致了解观众对《安家》这部电视大致的评价情况,当然因为我们所获取的样本数量有限,可能或多或少还会与用户实际的评价情况有一点偏差。
【代码获取方式】