Open3D面向机器学习的扩展库

Open3D-ML是Open3D的一个扩展,用于3D机器学习任务。它建立在Open3D核心库之上,并通过机器学习工具对其进行扩展,以进行3D数据处理。此repo集中于语义点云分割等应用程序,并提供可应用于常见任务的预训练模型以及用于训练的流程。

Open3D-ML与TensorFlow和PyTorch一起工作,可以轻松地集成到现有项目中,还可以提供独立于ML框架的通用功能,如数据可视化。

安装

Open3D-ML集成在Open3D v0.11+python发行版中,并与以下版本的ML框架兼容

* PyTorch 1.6

* TensorFlow 2.3

* CUDA 10.1 (On GNU/Linux x86_64, optional)

安装Open3D

# make sure you have the latest pip versionpip install --upgrade pip# install open3dpip install open3d

要安装Pythorch或TensorFlow的兼容版本,需要使用相应的需求文件:

# To install a compatible version of TensorFlowpip install -r requirements-tensorflow.txt# To install a compatible version of PyTorch with CUDApip install -r requirements-torch-cuda.txt

测试安装

# with PyTorch$ python -c "import open3d.ml.torch as ml3d"# or with TensorFlow$ python -c "import open3d.ml.tf as ml3d"

如果需要使用不同版本的ML框架或CUDA,可以从源代码重新构建Open3D。

使用教程

读取数据集

dataset命名空间包含用于读取公共数据集的类。这里我们读取SemanticKITTI数据集并将其可视化。

import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d
# construct a dataset by specifying dataset_pathdataset = ml3d.datasets.SemanticKITTI(dataset_path='/path/to/SemanticKITTI/')
# get the 'all' split that combines training, validation and test setall_split = dataset.get_split('all')
# print the attributes of the first datumprint(all_split.get_attr(0))
# print the shape of the first point cloudprint(all_split.get_data(0)['point'].shape)
# show the first 100 frames using the visualizervis = ml3d.vis.Visualizer()vis.visualize_dataset(dataset, 'all', indices=range(100))import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d# construct a dataset by specifying dataset_pathdataset = ml3d.datasets.SemanticKITTI(dataset_path='/path/to/SemanticKITTI/')# get the 'all' split that combines training, validation and test setall_split = dataset.get_split('all')# print the attributes of the first datumprint(all_split.get_attr(0))# print the shape of the first point cloudprint(all_split.get_data(0)['point'].shape)# show the first 100 frames using the visualizervis = ml3d.vis.Visualizer()vis.visualize_dataset(dataset, 'all', indices=range(100))

加载配置文件

模型、数据集和流程的配置存储在ml3d/Configs中。用户还可以构建自己的yaml文件来记录他们的定制配置。下面是一个读取配置文件并从中构造模块的示例。

import open3d.ml as _ml3dimport open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d
framework = "torch" # or tfcfg_file = "ml3d/configs/randlanet_semantickitti.yml"cfg = _ml3d.utils.Config.load_from_file(cfg_file)
# fetch the classes by the namePipeline = _ml3d.utils.get_module("pipeline", cfg.pipeline.name, framework)Model = _ml3d.utils.get_module("model", cfg.model.name, framework)Dataset = _ml3d.utils.get_module("dataset", cfg.dataset.name)
# use the arguments in the config file to construct the instances cfg.dataset['dataset_path'] = "/path/to/your/dataset"dataset = Dataset(cfg.dataset.pop('dataset_path', None), **cfg.dataset)model = Model(**cfg.model)pipeline = Pipeline(model, dataset, **cfg.pipeline)

运行一个预先训练过的模型

在上一个例子的基础上,我们可以用一个预先训练的语义分割模型实例化一个算法,并在数据集的点云上运行它。查看模型集合以获取预训练模型的权重。

import osimport open3d.ml as _ml3dimport open3d.ml.torch as ml3d
cfg_file = "ml3d/configs/randlanet_semantickitti.yml"cfg = _ml3d.utils.Config.load_from_file(cfg_file)
model = ml3d.models.RandLANet(**cfg.model)cfg.dataset['dataset_path'] = "/path/to/your/dataset"dataset = ml3d.datasets.SemanticKITTI(cfg.dataset.pop('dataset_path', None), **cfg.dataset)pipeline = ml3d.pipelines.SemanticSegmentation(model, dataset=dataset, device="gpu", **cfg.pipeline)
# download the weights.ckpt_folder = "./logs/"os.makedirs(ckpt_folder, exist_ok=True)ckpt_path = ckpt_folder + "randlanet_semantickitti_202009090354utc.pth"randlanet_url = "https://storage.googleapis.com/open3d-releases/model-zoo/randlanet_semantickitti_202009090354utc.pth"if not os.path.exists(ckpt_path): cmd = "wget {} -O {}".format(randlanet_url, ckpt_path) os.system(cmd) # load the parameters.pipeline.load_ckpt(ckpt_path=ckpt_path)
test_split = dataset.get_split("test")data = test_split.get_data(0)
# run inference on a single example.# returns dict with 'predict_labels' and 'predict_scores'.result = pipeline.run_inference(data)
# evaluate performance on the test set; this will write logs to './logs'.pipeline.run_test()

用户还可以使用预定义的脚本来加载预先训练的权重并运行测试。

训练模型

与推理类似,流程中提供了一个在数据集上训练模型的接口。

# use a cache for storing the results of the preprocessing (default path is './logs/cache')dataset = ml3d.datasets.SemanticKITTI(dataset_path='/path/to/SemanticKITTI/', use_cache=True)
# create the model with random initialization.model = RandLANet()
pipeline = SemanticSegmentation(model=model, dataset=dataset, max_epoch=100)
# prints training progress in the console.pipeline.run_train()

有关更多示例,请参见examples/和scripts/目录。

使用预定义脚本

scripts/semseg.py 提供了一个简单的数据集评估接口。准确地定义模型,避免了定义具体模型的麻烦。

python scripts/semseg.py {tf/torch} -c <path-to-config> --<extra args>

注意, extra args 将优先于配置文件中的相同参数。因此,在启动脚本时,可以将其作为命令行参数传递,而不是更改配置文件中的param。

例如:

# Launch training for RandLANet on SemanticKITTI with torch.
python scripts/semseg.py torch -c ml3d/configs/randlanet_semantickitti.yml --dataset.dataset_path <path-to-dataset> --dataset.use_cache True

# Launch testing for KPConv on Toronto3D with tensorflow.
python scripts/semseg.py tf -c ml3d/configs/kpconv_toronto3d.yml --split test --dataset.dataset_path <path-to-dataset> --model.ckpt_path <path-to-checkpoint>

要获得进一步的帮助,可运行python脚本 python scripts/semseg.py --help

ML库结构

Open3D-ML的核心部分位于ml3d子文件夹中,该子文件夹被集成到ML命名空间中的Open3D中。除了核心部分之外,目录示例和脚本还提供了支持脚本,用于开始在数据集上设置训练流程或运行网络。

├─ docs # Markdown and rst files for documentation
├─ examples # Place for example scripts and notebooks
├─ ml3d # Package root dir that is integrated in open3d
├─ configs # Model configuration files
├─ datasets # Generic dataset code; will be integratede as open3d.ml.{tf,torch}.datasets
├─ utils # Framework independent utilities; available as open3d.ml.{tf,torch}.utils
├─ vis # ML specific visualization functions
├─ tf # Directory for TensorFlow specific code. same structure as ml3d/torch.
│ # This will be available as open3d.ml.tf
├─ torch # Directory for PyTorch specific code; available as open3d.ml.torch
├─ dataloaders # Framework specific dataset code, e.g. wrappers that can make use of the
│ # generic dataset code.
├─ models # Code for models
├─ modules # Smaller modules, e.g., metrics and losses
├─ pipelines # Pipelines for tasks like semantic segmentation
├─ scripts # Demo scripts for training and dataset download scripts

任务和算法

分割

对于语义分割的任务,我们使用mIoU(mean intersection-over-union)来衡量不同方法在所有类上的性能。下表显示了分段任务的可用模型和数据集以及各自的分数。每个分数链接到各自的权重文件。

模型集合

有关所有权重文件的完整列表,请参见模型文件 model_weights.txt 以及MD5校验model_weights.md5.

数据集集合

下面是我们为其提供数据集读取器类的数据集列表。

SemanticKITTI

Toronto 3D

Semantic 3D

S3DIS

Paris-Lille 3D

要下载这些数据集,请访问相应的网页,可查看scripts/download_datasets中的脚本。

资源

三维点云论文及相关应用分享

【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法

3D目标检测:MV3D-Net

三维点云分割综述(上)

3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)

win下使用QT添加VTK插件实现点云可视化GUI

JSNet:3D点云的联合实例和语义分割

大场景三维点云的语义分割综述

PCL中outofcore模块---基于核外八叉树的大规模点云的显示

基于局部凹凸性进行目标分割

基于三维卷积神经网络的点云标记

点云的超体素(SuperVoxel)

基于超点图的大规模点云分割

更多文章可查看:点云学习历史文章大汇总

SLAM及AR相关分享

【开源方案共享】ORB-SLAM3开源啦!

【论文速读】AVP-SLAM:自动泊车系统中的语义SLAM

【点云论文速读】StructSLAM:结构化线特征SLAM

SLAM和AR综述

常用的3D深度相机

AR设备单目视觉惯导SLAM算法综述与评价

SLAM综述(4)激光与视觉融合SLAM

Kimera实时重建的语义SLAM系统

SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM

易扩展的SLAM框架-OpenVSLAM

高翔:非结构化道路激光SLAM中的挑战

SLAM综述之Lidar SLAM

基于鱼眼相机的SLAM方法介绍

(0)

相关推荐