【Stokes 定理】图解高等数学-下 27

13.7 Stokes 定理

Stokes 定理告诉我们, 三维空间中的曲面边界上的线积分等于向量场函数旋度在法向分量的曲面积分.

环量密度: 旋度

之前看到在二维空间中向量场 F = Mi + Nj 在某点的旋度是一个数值 ∂N/∂x−∂M/∂y∂N∂x−∂M∂y. 而在一个三维空间内向量场(如流速场)中, 旋度就可以度量场中某点 P 处的旋转程度. 此时旋度为一个向量, 方向为该旋转轴的方向(旋转平面的法向量), 场中最大旋转的速度向量为:

观察下面动图, 三维空间中该曲面上 3 个不同的点处旋度动画:

  • 点1 - 旋度>0, 逆时针旋转;

  • 点2 - 旋度<0, 顺时针旋转;

  • 点3 - 旋度=0.01, 接近0, 所以几乎没有旋转;

Stokes 定理

Stokes Theorem 是格林定理旋度形式在三维空间的推广. 当向量场是连续的, 且在曲面 S 上处处可微的情况下, 定理成立.

Stokes 定理: 向量场 F = Mi + Nj + Pk 绕一个定向曲面 S 的边界 C 沿与曲面单位法向量 n 成逆时针方向上的环流量等于 (∇×F)⋅n 在 S 上的积分.

可以观察下面动图, 来更好地理解 Stokes 定理.

曲线 C 一定要是一个空间中封闭的曲线, 但是曲面 S 可以是任何一个以 C 为边界的曲面(如下动画所示):

由 Stokes 定理可知, 如果两定向曲面 S1 和 S2 有相同的边界 C, 则他们的旋度积分也相等.最后推荐观看《轻松理解散度和旋度 - 数学知识的动画解析》这个短片, 一定会有更深理解.

(0)

相关推荐

  • 微积分基本定理背后的直觉,将其推广到高斯定理和斯托克斯定理

    微积分基本定理 我们在大学都学过的微积分基本定理,它是这样的: 该定理背后的直觉是非常简单的.函数从点a到点b的导数的积分是所有df变化的和,而不是它的离散级数的和: 在上述和中,"中间 & ...

  • 【散度定理】图解高等数学-下 28

    散度定理 二维平面 Green 定理 - 散度法向形式说的是, 在向量场中穿过简单闭曲线的向外流量可以通过下式做积分求得散度: 类似在三维空间中的散度定理就是指, 在三维向量场中穿过一闭曲面的向外净流 ...

  • 【平面的格林(Green)定理】图解高等数学-下 24

    13.4 平面的格林(Green)定理 如何计算保守场的流量积分, 需要先对场建立势函数, 求出路径端点的值. 当向量场不是保守场时候, 如何计算穿过平面闭曲线的流量和通量积分呢. 可用格林定理, 将 ...

  • 修订 |《图解高等数学 - 下》 合集

    2018.12.11 更新修订后的03<笛卡尔坐标/点积/叉积>.04<空间中的直线和平面>两节的文章最新链接. 高数下这部分内容是 [遇见数学] 基于<托马斯微积分&g ...

  • 修订 |【空间中的直线和平面】图解高等数学 -下 04

    2018.11.26   补充了直线一般方程.平面束方程的图像动画, 修改了文章格式 10.3 空间中的直线和平面 在一元微积分中, 应用了直线(切线)的知识研究平面曲线: 可微曲线是充分线性的. 现 ...

  • 修订 |【笛卡尔坐标/点积/叉积】图解高等数学-下 03

    2018.11.23 补充更新了向量部分内容, 版面做了调整. 10.  空间中的向量和运动 当一个物体在空间中运动时, 其坐标方程 x=f(t), y=g(t), z=h(t) 提供了物体运动和路径 ...

  • 《图解高等数学 - 下》 合集

    高数下这部分内容是 [遇见数学] 基于<托马斯微积分>一书结构所制作的.尽管我花了很长时间来编写动画程序,但最终出来的成品很多连自己都不甚满意.不过考虑来去暂且先把第一个版本树立起来作为靶 ...

  • 《图解高等数学 - 下》 1 ~ 26 合集

    高数下部分[遇见数学] 是基于<托马斯微积分>一书所编程制作的图解系列文章,计划还余几节就可以整理完毕了,这里先将之前做一个合集方便朋友们查询. 1 ~ 26 内容及链接 1. 平面向量/ ...

  • 【参数化曲面】图解高等数学-下 26

    13.6 参数化曲面 空间曲面定义有 3 种方式; 显示: z = f(x,y) 隐式: F(x,y,z) = 0 参数化曲面: r(u,v) = f(u,v)i + g(u,v)j + h(u,v) ...

  • 【曲面面积和曲面积分】图解高等数学-下 25

    13.5 曲面面积和曲面积分 计算曲面积分的技巧是要将其转换成平面区域的二重积分. 曲面面积 观察下图曲面 S 以及它的垂直投影. 将所有小平面分割近似所有的小区面, 这样就构成了曲面 S , 因此其 ...