MAT之GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性
MAT之GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性
输出结果
实现代码
global p
global t
global R
global S1
global S2
global S
S1 = 10;
p = [0.01 0.01 0.00 0.90 0.05 0.00;
0.00 0.00 0.00 0.40 0.50 0.00;
0.80 0.00 0.10 0.00 0.00 0.00;
0.00 0.20 0.10 0.00 0.00 0.10]';
t = [1.00 0.00 0.00 0.00;
0.00 1.00 0.00 0.00;
0.00 0.00 1.00 0.00;
0.00 0.00 0.00 1.00]';
P_test = [0.05 0 0.9 0.12 0.02 0.02;
0 0 0.9 0.05 0.05 0.05;
0.01 0.02 0.45 0.22 0.04 0.06;
0 0 0.4 0.5 0.1 0;
0 0.1 0 0 0 0]';
net = newff(minmax(p),[S1,4],{'tansig','purelin'},'trainlm');
net.trainParam.show = 10;
net.trainParam.epochs = 2000;
net.trainParam.goal = 1.0e-3;
net.trainParam.lr = 0.1;
[net,tr] = train(net,p,t);
s_bp = sim(net,P_test)
R = size(p,1);
S2 = size(t,1);
S = R*S1 + S1*S2 + S1 + S2;
aa = ones(S,1)*[-1,1];
popu = 50;
initPpp = initializega(popu,aa,'gabpEval',[],[1e-6 1]);
gen = 100;
[x,endPop,bPop,trace] = ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...
'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);
figure(1)
plot(trace(:,1),1./trace(:,3),'r-');
title( 'GA优化BP神经网络,绘制均方误差变化曲线—Jason niu')
hold on
plot(trace(:,1),1./trace(:,2),'b-');
xlabel('Generation');
ylabel('Sum-Squared Error');
figure(2)
plot(trace(:,1),trace(:,3),'r-');
title( 'GA优化BP神经网络,绘制适应度函数变化曲线—Jason niu')
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fittness');
[W1,B1,W2,B2,val] = gadecod(x);
net.IW{1,1} = W1;
net.LW{2,1} = W2;
net.b{1} = B1;
net.b{2} = B2;
net = train(net,p,t);
s_ga = sim(net,P_test)
相关文章
GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性
赞 (0)