全网最全最细的图形折叠问题专题(300页)
页面有限,先展示1-50页
目录
专题01 矩形的折叠中的距离或线段长度问题
专题02 矩形折叠问题中的类比问题
专题03 图形折叠中的直角三角形问题
专题04 图形折叠中的等腰三角形问题
专题05 图形折叠中的落点固定问题
专题06 菱形的折叠问题
专题07 圆中折叠问题的巧妙应用
专题08 三角形的折叠问题
专题09 以三角形为基础的图形的旋转变换问题
专题10 以矩形为基础的图形的旋转变换问题
专题11 以正方形为基础的图形的旋转变换问题
专题12 三角形中的旋转综合问题
专题13 三角形中的平移综合问题
专题14 三角形中的对称综合问题
专题15 圆中的翻折综合问题
专题16 巧用图形的翻折解决几何问题
专题17 巧用图形的旋转解决几何问题
专题18 巧用图形的平移解决几何问题
【典例1】在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .
图例1-1
【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.
①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.
确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P
专题02 矩形折叠问题中的类比问题
【典例2】如图例2-1,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求的值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求的值.
图例2-1 图例2-2
【解析】(1)同意,理由如下:
如图例2-2,连接EF
∵E是AD的中点,∴AE=ED,由折叠及矩形性质得:AE=EG,∠EGF=∠D=90°,所以,EG=DE
在Rt△EFG和Rt△EFD中,∵EF=EF EG=DE,∴Rt△EFG≌Rt△EFD (HL),∴DF=FG
(2)根据DC=2DF,设DF=FC=x,AE=ED=y
由折叠性质及(1)知BF=BG+GF=AB+GF=3x
在Rt△BCF中,由勾股定理得:BF2=BC2+CF2,(3x)2=(2y)2+x2,即:,∴
(3)设AE=ED=y,DF=x,根据DC=nDF,得CD=nx,FC=(n-1)x;
由折叠性质及矩形性质知:BF=BG+GF=AB+GF=(n+1)x
在Rt△BCF中, BF2=BC2+CF2,[(n+1)x]2=(2y)2+[(n-1)x]2,即:,∴
【小结】本题立意新颖,是河南中考首次采用此类型题目,给人一种耳目一新的感觉. “操作发现——问题解决——类比探究”所展现的是数学研究的核心,即“提出问题——解决问题——理论扩展及应用”. 学生需要具备完善的知识体系及一定的观察、计算能力才能完整解答此题. 本题的意义不仅在于考查学生对折叠、矩形、全等三角形、勾股定理、解方程等知识的本质理解与掌握,在很大程度上是检验学生的学习过程和学习方式,从一个新的数学角度考查了学生的数学思维能力.
【巩固提升】
1、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则的值为
A. B. C. D.
【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x.在Rt△DAF中,利用勾股定理可求出x的值,即可得出答案.
【解析】根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.
在△OEF和△OBP中,∵,∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP.
设EF=x,则BP=x,DF=DE﹣EF=4﹣x.
又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.
在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,
解得:x=0.6,∴DF=4﹣x=3.4,∴.
故选C.
【小结】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.
2、如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为( )
A.(,) B.(,)
C.(,) D.(,)
【分析】连结EF,作GH⊥x轴于H,根据矩形的性质得AB=OD=OF+FD=3,再根据折叠的性质得BA=BG=3,EA=EG,∠BGE=∠A=90°,而AE=DE,则GE=DE,于是可根据“HL”证明Rt△DEF≌Rt△GEF,得到FD=FG=2,则BF=BG+GF=5.在Rt△OBF中,利用勾股定理计算出OB,然后根据△FGH∽△FBO,利用相似比计算出GH和FH,根据OH=OF﹣HF,即可得到G点的坐标.
【解析】连结EF,作GH⊥x轴于H,如图,
∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3.
∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°.
∵点E为AD的中点,∴AE=DE,∴GE=DE.
在Rt△DEF和Rt△GEF中,∵,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,
∴BF=BG+GF=3+2=5.
在Rt△OBF中,OF=1,BF=5,∴OB.
∵GH∥OB,∴△FGH∽△FBO,∴,即,∴GH,FH,
∴OH=OF﹣HF=1,∴G点坐标为().故选B.
【小结】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了坐标与图形的性质和相似三角形的判定与性质.
3、如图,在矩形ABCD中,AB=3,BC=4,点E是边AB上一点,且AE=2EB,点P是边BC上一点,连接EP,过点P作PQ⊥PE交射线CD于点Q.若点C关于直线PQ的对称点正好落在边AD上,求BP的值.
【解析】过点P作PE⊥AD于点E,∴∠PEC'=90°
∵矩形ABCD中,AB=3,BC=4
∴∠EAB=∠B=∠C=∠QDC'=90°,CD=AB=3
∴四边形CPED是矩形
∴DE=PC,PE=CD=3
∵AE=2EB,∴AE=2,EB=1
设BP=x,则DE=PC=4﹣x
∵点C与C'关于直线PQ对称,∴△PC'Q≌△PCQ
∴PC'=PC=4﹣x,C'Q=CQ,∠PC'Q=∠C=90°
∵PE⊥PQ,∴∠BPE+∠CPQ=90°
又∵∠BEP+∠BPE=90°,∴∠BEP=∠CPQ,∴△BEP∽△CPQ
同理可证:△PEC'∽△C'DQ
∴,,∴CQ==x(4﹣x)
∴C'Q=x(4﹣x),DQ=3﹣x(4﹣x)=x2﹣4x+3
∴,∴C'D=3x,EC'=
∵EC'+C'D=DE,∴,解得:x1=1,x2=
∴BP的值为1或
4、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A (11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(1)如图①,当∠BOP=30°时,求点P的坐标;
(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);
(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).
【解析】(1)根据题意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);
(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,
∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,
又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,
由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,
∴m=t2﹣t+6(0<t<11);
(3)过点P作PE⊥OA于E,如图3,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,
∴=,
在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),
∴PC'=OC'=PC,∴BP=AC',
∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,
∴=,
∵m=t2﹣t+6,
∴3t2﹣22t+36=0,
解得:t1=,t2=
故点P的坐标为( ,6)或( ,6).