【技贴】基于Virtual.lab的车身典型结构模态识别方法!

《车身典型结构模态识别方法研究》一文中我们利用常规方法,即通过计算频响函数的PCH文件进行车身模态识别,这种方法在实际应用非常广泛。但我们知道频响函数计算是基于模态结果进行,在通常情况下都会先计算一个零部件或系统的模态,此时可以直接利用模态的计算结果(一般op2格式)进行频响函数的相关计算,这样既提高了效率又节约了资源,而且还能获得预期的结果。

一般对于零部件或单个子系统,如传动轴模态、转向系统模态、悬置系统支架模态等采用上文《基于FRF的结构模态识别方法》的方法非常方便高效,但对于大型结构,如车身、TB及整车等系统采用《车身典型结构模态识别方法研究》方法相对更加快捷,而且结果可以采用多种方式显式。

一、基于模态频响的模态识别方法(以车身模态为实战案例)

1、车身模态识别响应点

车身整体弯曲及扭转模态识别采用十点法更加快捷准确,激励点如左下图所示;(1)弯曲模态识别10个点的激励力同向;(2)扭转模态识别8个对角点激励力反向;

图1 十点法识别设置点

2、模态结果导入(op2格式),只需保留mode  sets即可,注意单位。

图2 模态结果导入

2、设定模态阻尼,如3%。

图3 模态阻尼设定

3、定义set,以便于定义激励和响应。

图4 定义输出set集

4、载荷集设置,相当于Optistruct中的Rload1。

图5 激励载荷集定义

5、频响函数工况设定

图6 频响工况定义

5、计算频率范围设定

图7 计算频率范围设定

6、结果读取

通过后处理可得到弯曲及扭转工况下的车身模态识别结果,从弯曲模态识别结果可以看出,在49Hz十个响应点均出现峰值,结合模态计算结果可判定该模态为车身整体弯曲模态。

图8 车身弯曲模态识别结果

在设定扭转工况时,只需要在Load Function中将激励力由1N修改为-1N即可。从扭转模态识别结果可以看出,在35Hz和4Hz出现峰值,结合模态计算结果可判定35Hz为背门框扭转模态,47Hz为整体扭转模态。

图9 车身扭转模态载荷设定

图10 车身扭转模态识别结果

二、小结
1、基于Virtual.lab的频响函数结构模态识别方法,在实际工程中非常实用且快捷高效,根据模态的基本原理,充分利用计算的模态结果文件即一果多用,避开工程师自身的经验,能快速定位;
2、通过该方法识别的模态还需要结合模态计算结果进行综合考虑,进而确定所关注的模态。

—  荐  读  —

整车NVH性能正向开发!

新能源汽车对NVH的挑战!

车身典型结构模态识别方法研究!

汽车NVH仿真的主要内容

CAE在整车异响开发中的应用

车身弯曲及扭转刚度目标值确定方法

压缩机支架的拓扑优化研究

基于FRF的结构模态识别方法

转向系统MPC建模方法

【免责声明】本公众号所刊登的内容、资料等来自于个人总结、技术论坛、文献、软件帮助文档及网络等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!
(0)

相关推荐