文末福利 | 质子治疗计划系统介绍
作者简介
1
引言
与光子计划系统 (Treatment Planning System TPS) 相似,质子 TPS 也属于大型放射治疗设备的配套软件。基于此软件,对质子治疗设备的治疗头进行物理建模,建立质子射线与患者虚拟假体相互作用的工具平台。一般说来, TPS 系统采用一种或多种算法对患者体内的吸收剂量进行计算,计算结果供计划设计者或医生评估使用。使用前,首先,需要采集质子治疗头的射线特征数据,例如深度剂量曲线,空气束斑大小以及绝对剂量刻度值等;其次,把测量数据导入质子计划系统中进行数学建模,建模是一个逆向优化的过程,在物理参数的框架下,通过调节 TPS 设定的参数,拟合出与实际测量曲线相匹配的模型,并采用测量设备进行模型调试 (Commissoning) ;再次,导入患者影像 (一般为 CT 数据),TPS 会对影像进行三维重建,并配备便捷的勾画及显示工具供临床医生完成靶区及危及器官的勾画;然后,医学物理师和医生共同完成计划设计的工作,其中包括:照射角度的选择、计划优化,计划剂量计算,计划审核评估,计划的验证等最后,可实施的计划方案交予治疗团队完成患者的实际照射工作。
质子计划系统在患者质子治疗流程中是重要的接口平台,,涉及许多综合学科的交叉应用。本内容作者以临床应用性为切入点,介绍简化质子临床工作的功能工具模块,对于其背后涉及的物理学、数学及计算机学的知识没有进行深入的挖掘。目前,质子治疗计划系统主要采用 Windows 操作系统,并配置统一的数据库管理平台,机器的模型数据、临床设置以及患者的数据统一的存储于数据库中。质子 TPS 系统可分为医生工作站,和物理师工作站:医生工作站主要用于患者数据的建模功能,包括轮廓的勾画,计划的剂量学评估等;物理师工作站,主要用于患者计划和 QA 方案的设计。一般说来,根据质子治疗室及患者数目,建议一间质子治疗室至少配置 1~2 套物理师工作站和 2~4 套的医生工作站。目前,由于大多 TPS 采用集成的服务器构架模式,客户端计算机已不承担程序应用和数据储存的功能,转而采用桌面虚拟化技术,这种构架方式便于管理维护,扩展及未来的升级,物理师和医生通过权限授权的方式统一登陆到客户端部署应用。
笔者按照质子 TPS 系统应用流程顺序,对其主要组成部分做简要介绍,这包括: (1) 器官勾画; (2) 计划照射方案; (3) 计划的优化;(4)剂量计算;(5) 计划评估; (6) 计划QA; (7) 高级治疗模式等内容。
2
TPS 主要组成部分
2.2 计划照射方案
假定患者呼吸周期是恒定的,这样 4DCT 中每个时相的场景剂量可以一个平均呼吸周期为基准进行刻度处理; 如果患者的呼吸周期是变化的,可以采用正态分布的均值和方差对呼吸周期进行采样,以得到场景剂量。其次,对于给定的 t 时刻及相应的扰动场景 s , 计算落入相位 P 图像的时间段 Tp(s) , 公式表达为:
使用 MCO 做计划的时候, Constraint 更重要一些,它限定了解的可行性区域,意思也就是说在某个特定区域求解出来的解才是有临床意义的。但是,限制太多、太严格,可能无法得到 Pareto 解,因此,要充分考虑约束项的设定。 目标函数设置的时候,根据临床要求设置 A 值,危及器官的目标用 EUD=0 来表示, A 值一般取 2 ,这样目标为凸函数,存在单个目标的最小值。 临床中对于过多目标要求的不推荐使用 MCO 优化方法。例如一个 NPC 计划,临床需要考察 30 多个目标,那么系统会默认生成 60 个以上的帕累托计划,由于同时考察的计划数目太多,临床计划评估很复杂。 MCO 导航出来的计划还需要使用 Dose-Mimic 的工具生成临床可执行的计划, 剂量模仿算法会在下个模块详细介绍,本模块就不赘述。需要强调的时,最终成的计划同意可以当作常规计划来处理,对计划进行微调,以达到临床的最佳结果。
3
总结和展望
参考文献
Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, WalkerM, Vembar M, Olszewski M, Subramanyan K, Lavi G, Weese J: Automatic Model-Based Segmentation of the Heartin CT Images. IEEE Transactions on Medical Imaging27(9), 1189–1201 (September 2008). 10.1109/TMI.2008.918330.
IsambertA, Dhermain F, Bidault F, et al. Evaluation of an atlas-based automaticsegmentation software for the delineation of brain organs at risk in aradiation therapy clinical context. Radiother Oncol. 2008; 87:93–9.
IbragimovB, Xing L.Segmentation oforgans-at-risks in head and neck CT images using convolutional neuralnetworks. Med Phys. 2017Feb;44(2):547-557.
TongN, Gou S, Yang S, Ruan D, Sheng K. Fully automaticmulti-organ segmentation for head and neck cancerradiotherapy using shape representation model constrained fully convolutionalneural networks. Med Phys. 2018Oct; 45(10):4558-4567.
ZhuW, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, Du N, Fan W, Xie X. AnatomyNet: Deeplearning for fast and fully automated whole-volumesegmentation of head and neck anatomy. Med Phys. 2019 Feb;46(2):576-589.
Ronneberger, O., Fischer, P. & Brox, T. in InternationalConference on Medical Image Computing and Computer-Assisted Intervention.234-241 (Springer).
HaraldPaganetti. Proton therapy Physics[M]
LomaxA., Intensity modulated proton therapy and its sensitivity to treatmentuncertainties the potential effects of inter-fraction and inter-field motions.Physics in Medicine & Biology, 2008, 53(4): 1043.
FredrikssonA., Forsgren A., Hårdemark B., Minimax optimization for handling range and setup uncertainties inproton therapy. Medical physics, 2011, 38(3): 1672–1684.
Liu W., Frank S.J., Li X., Li Y., Park P.C., Dong L., Ronald Zhu X., MohanR., Effectiveness of robust optimization inintensity-modulated proton therapy planning for head and neck cancers. Medicalphysics, 2013, 40(5): 051711.
LiuW., Liao Z., Schild S.E., Liu Z., Li H., Li Y., Park P.C., Li X., Stoker J., ShenJ., et al., Impact of respiratory motion on worst-case scenario optimizedintensity modulated proton therapy for lung cancers. Practical radiationoncology, 2015, 5(2): e77–e86.
Engwall E.,Fredriksson A., Glimelius L., 4D robust optimization including uncertainties intime structures can reduce the interplay effect in proton pencil beam scanning radiationtherapy. Medical physics, 2018a, 45(9): 4020–4029.
WilkensJ.J., Oelfke U., Analytical linear energy transfer calculations for protontherapy.
Medical physics,2003, 30(5): 806–815.
Paganetti H.,Relative biological effectiveness (RBE) values for proton beam therapy. Variationsas a function of biological endpoint, dose, and linear energy transfer. Physicsin Medicine & Biology, 2014, 59(22): R419.
Traneus E., ÖdénJ., Introducing Proton Track-End Objectives in Intensity Modulated ProtonTherapy Optimization to Reduce Linear Energy Transfer and Relative Biological Effectivenessin Critical Structures. International Journal of Radiation Oncology*Biology*Physics, 2019, 103(3): 747–757.
Liu C., PatelS.H., Shan J., Schild S.E., Vargas C.E., Wong W.W., Ding X., Bues M., Liu W.,Robust Optimization for Intensity Modulated Proton Therapy to Redistribute HighLinear Energy Transfer from Nearby Critical Organs to Tumors in Head and Neck Cancer.International Journal of Radiation Oncology* Biology* Physics, 2020.
Kamran SC, MuellerBS, Paetzold P, Dunlap J, Niemierko A, Bortfeld T, Willers H, Craft D.Multi-criteria optimization achieves superior normal tissue sparing in aplanning study of intensity-modulated radiation therapy for RTOG 1308-eligiblenon-small cell lung cancer patients. Radiotherapy and Oncology. RadiotherOncol. 2016 Mar;118(3):515-20.
Chen W,Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D.Including robustness in multi-criteria optimization forintensity-modulated proton therapy. Phys Med Biol. 2012Feb 7;57(3):591-608.
Kierkels RG, Visser R, Bijl HP, Langendijk JA, van 't Veld AA, Steenbakkers RJ, Korevaar EW.Multicriteria optimization enables less experienced planners to efficientlyproduce high quality treatment plans in head and neck cancer radiotherapy. Radiat Oncol. 2015Apr 12;10:87.
Engdahl S.,Validation of Ion Therepy Dose Calculation Algorithms by Monte Carlo, 2015.
Erik W. Korevaar,Steven J.M. Habraken , Daniel Scandurra, et al. Practical robustness evaluationin radiotherapy – A photon and proton-proof alternative to PTV-based planevaluation. Radiotherapy and Oncology 141 (2019) 267–274.
Shang H., Pu Y.,Wang W., Dai Z., Jin F., Evaluation of plan quality and robustness of IMPT andhelical IMRT for cervical cancer. Radiation Oncology, 2020, 15(1): 1–11.
Dale R, Jones B.The assessment of RBE effects using the concept of biologically effective dose.Int J Radiat Oncol Biol Phys. 1999;43(3):639–45.
Paganetti H.,Relative biological effectiveness (RBE) values for proton beam therapy. Variationsas a function of biological endpoint, dose, and linear energy transfer. Physicsin Medicine & Biology, 2014, 59(22): R419.
25. Giulia Giovannini,Till Böhlen1, Gonzalo Cabal, Julia Bauer, et al. Variable RBE in proton therapy:comparison of different model predictions and their influence on clinical-likescenarios. Radiation Oncology (2016) 11:68.
Appenzoller L.M.,Michalski J.M., Thorstad W.L., Mutic S., Moore K.L., Predicting dose-volumehistograms for organs-at-risk in IMRT planning. Medical physics, 2012, 39(12):7446–7461.
Kierkels R.G.,Fredriksson A., Both S., Langendijk J.A., Scandurra D., Korevaar E.W., Automatedrobust proton planning using dose-volume histogram-based mimicking of thephoton reference dose and reducing organ at risk dose optimization.International Journal of Radiation Oncology* Biology* Physics, 2019, 103(1):251–258.
Seco J., RobertsonD., Trofimov A., Paganetti H., Breathing interplay effects during proton beamscanning: simulation and statistical analysis. Physics in Medicine &Biology, 2009, 54(14): N283.
MoriS, Furukawa T. Rapid Phase-Correlated Rescanning Irradiation ImprovesTreatment Time in Carbon-Ion Scanning Beam Treatment Under Irregular Breathing.Phys Med Biol, 61 (10), 3857-66.
Engwall E.,Glimelius L., Hynning E., Effectiveness of different rescanning techniques forscanned proton radiotherapy in lung cancer patients. Physics in Medicine &Biology, 2018b, 63(9): 095006.
Weistrand O.,Svensson S., The ANACONDA algorithm for deformable image registration in radiotherapy.Medical physics, 2015, 42(1): 40–53.
Kadoya N.,Nakajima Y., Saito M., Miyabe Y., Kurooka M., Kito S., Fujita Y., Sasaki M.,Arai K., Tani K., et al., Multi-institutional validation study of commerciallyavailable deformable image registration software for thoracic images.International Journal of Radiation Oncology* Biology* Physics, 2016, 96(2): 422–431.
Guillaume Cazoulat , Dawn Owen, Martha M Matuszak, James M Balter, Kristy K Brock.Biomechanical Deformable Image Registration of Longitudinal Lung CT ImagesUsing Vessel Information. Phys Med Biol, 61 (13), 4826-39.
Woerner AJ, ChoiM, Harkenrider MM, Roeske JC, Surucu M. Evaluation of Deformable ImageRegistration-Based Contour Propagation From Planning CT to Cone-Beam CT.Technol Cancer Res Treat, 16 (6),
Joakim H Jonsson,Magnus G Karlsson, Mikael Karlsson, Tufve Nyholm.Treatment planning using MRIdata: an analysis of the dose calculation accuracy for different treatmentregions. Radiat Oncol.; 5: 62 2010.
Greer, Dowling,Lambert, et al. A magnetic resonance imaging-based workflow for planning radiotherapyfor prostate cancer. Med J Aust ;194: s24-7,2011.
Mika Kapanen &Mikko Tenhunen. T1/T2*-weighted MRI provides clinicallyrelevant pseudo-CT density data for the pelvic bones in MRI-only basedradiotherapy treatment planning. Acta Oncolo.; 52: 612–61,2013.
Neelam Tyagi Ph.D.Sandra Fontenla M.S. Jing Zhang M.S. et al. Dosimetric and workflow evaluationof first commercial synthetic CT software for clinical use in pelvis. Phys Med Biol.; 62(8): 2961–2975, 2017.
MatteoMaspero, Cornelis, Guillaume Landry, et al. Feasibility ofMR-only proton dose calculations for prostate cancer radiotherapy using acommercial pseudo-CT generation method. Phys Med Biol; 62(24):9159, 2017.
Ding X., Li X.,Zhang J.M., Kabolizadeh P., Stevens C., Yan D., Spot-scanning proton arc(SPArc) therapy: the first robust and delivery-efficient spot-scanning protonarc therapy. International Journal of Radiation Oncology* Biology* Physics,2016, 96(5): 1107–1116.
Annalisa Patriarca 1, Charles Fouillade 2, Michel Auger 1, Frédéric Martin.Experimental Set-up for FLASH Proton Irradiation of Small Animals Using aClinical System. Int J Radiat Oncol Biol Phys, 102 (3), 619-626.