压轴题打卡11:动点有关的几何综合问题

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.
(1)求CD的长;
(2)若点P以1cm/s速度运动,点Q以2√2cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;
(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.
参考答案:
考点分析:
直角梯形;根据实际问题列二次函数关系式;勾股定理;解直角三角形。
题干分析:
(1)过D点作DH⊥BC,垂足为点H,则在Rt△DCH中,由DH、CH的长度,运用勾股定理即可求出CD的长;
(2)由于点P在线段CB上运动,而点Q沿C→D→A方向做匀速运动,所以分两种情况讨论:①点Q在CD上;②点Q在DA上.针对每一种情况,都可以过Q点作QG⊥BC于G.由于点P、Q运动的时间为t(s),可用含t的代数式分别表示BP、QG的长度,然后根据三角形的面积公式即可求出S与t的函数关系式,并写出t的取值范围;
(3)令DQ=CP,Q点在AD边上,求出a的取值范围.
解题反思:
本题考查了动点与图形面积问题,需要通过题目的条件,分类讨论,利用特殊三角形,梯形的面积公式进行计算.
(0)

相关推荐