数据池应该如何构建?

1. 打通数据壁垒

没有较为完整的全渠道数据,会使运营受阻,因此企业需要一个共享的数据来源,连接每个渠道上的每一个客户互动,从微信到网站,从门店到ERP,支付服务,客服系统,甚至是CRM。

然后,再将数据传递到各个部门使用的系统中去。

这样就可以让数据在各个系统各个部门之间流动,从而打破公司的“部门墙”,让每个人都可以对客户有全面的了解,同时也有助于建立公司基于数据、基于事实说话的文化。

进而节约开发成本,提升运营效率,让团队更专注。

2. 数据归一化处理

各种重复记录、字段缺失、跨系统数据值的不匹配,一直是困扰运营的问题。

因此企业需要在整个组织内实施通用的数据标准,定义构成良好数据的内容,并从源中删除错误数据,让整个企业相信数据是正确的。

3. 构建画像

以上两步可以说是数据筹备阶段,接下去就应该是数据洞察阶段。

企业可以将收集到的零散的客户属性、行为数据转译成标签,为每个客户打上独一无二的“烙印”,比如他们最喜欢的产品类别、购买频次等等,并对这些特征进行分析、统计,以挖掘潜在的价值信息,勾勒出客户画像。

打上标签之后,企业还可以根据自定义业务条件进行标签分组,这样就能在与客户沟通时候,知道应该说什么,为客户提供独特的体验。

4. 管理完整行为数据

客户的行为数据可以为客户画像进行良好补充。随着客户与企业互动渠道激增,知道客户的喜好往往还不够,有时可能还需要知道客户行为发生在何时,从而更精准地对症下药。

企业可以通过捕捉客户的完整行为数据,敏锐洞察客户意向, 基于不同阶段制定运营策略,充分挖掘客户生命周期价值。拥有了完整的行为数据后,企业对于同类型的客户,还可以预设针对性运营策略。

数据池是流量池的数据基础,那么高质量的数据就是必不可少的。高质量的数据是进行分析决策、精细化运营的重要参考,进而企业更好的为客户服务,达到发掘数据价值、带来更多流量的目的。

(0)

相关推荐