计算机游戏的机理

1

引言

游戏人工智能是人工智能在游戏中的应用和实践。通过分析游戏场景变化、玩家输入获得对环境态势的理解,进而控制游戏中各种活动对象的行为逻辑,并做出合理决策,使它们表现得像人类一样智能,旨在提高游戏娱乐性、挑战智能极限。游戏人工智能是结果导向的,最关注决策环节,可以看作“状态(输入)”到“行为(输出)”的映射,只要游戏能够根据输入给出一个看似智能的输出,那么我们就认为此游戏是智能的,而不在乎其智能是怎么实现的(Whatever Works)。那么怎么衡量游戏人工智能的水平呢?目前还没有公认的评价方法,而且游戏人工智能并不是特别关心智能体是否表现得像人类一样,而是更加关心游戏人工智能的智能极限——能否战胜人类的领域专家,如:Waston在智能问答方面战胜了Jeopardy、超级明星Ken Jennings和Brad Rutter;AlphaGo在围棋上战胜了欧洲冠军樊麾。

2

游戏的一般性机理

图1 游戏一般过程机理

如图1 所示,游戏玩家可以看作是一个态势感知过程,接收原始数据作为输入,输出动作序列,在内部进行了态势觉察产生低级信息、态势理解形成高级认知、态势预测估计将来的态势,并根据已有的经验和规则,在目标和动机的驱动下产生行动方案,从而指导游戏向更有利于玩家的方向进行,然后进入下一个循环序列[1]。
游戏的一般性机理还可以看作是一个“状态”到“动作”的映射,游戏的环境状态、玩家的目标是自变量,玩家的操作是因变量,而映射关系正是游戏一般机理的核心部分。它可以通过如神经网络这种技术来对自变量进行特征提取和表征,也可以直接使用自变量,利用公式计算获得输出值,进而映射到相应的动作。

3

计算机游戏的机理

游戏人工智能是创造一种代替人类操作游戏的智能体,想要让机器玩好游戏,我们就需要了解“它”玩游戏的机理,这样才能更好地改进它。
计算机的游戏机理如图2所示:首先通过某种方式(读取视频流、游戏记录等)获得环境的原始数据,然后经过去重、去噪、修正等技术对数据进行预处理,并提取低级语义信息;然后经过降维、特征表示(人工或计算机自动提取)形成高级语义信息;然后通过传统机器学习方法进行模式识别,进一步理解数据的意义;最后结合先前的经验(数据挖掘,或人工提取,或自学习产生的领域知识库)决策生成行动方案,进而执行改变环境,并进行新一轮的迭代。在每次迭代的过程中,智能体还可以学习新的经验和教训,进而进化成更加智能的个体[2]。

图 2  计算机游戏机理

[1] 高岩, 程胜利, 罗芳. 人工智能在多人游戏中的应用[J]. 现代计算机:上下旬,2001(8):98-99.

[2] 邹会来, 人工智能技术在游戏开发中的应用与研究. 浙江师范大学, 2011.

end

本文来源:宇航智控

(0)

相关推荐