阴影面积题汇总
阴影部分面积计算是全国中考的高频考点,常在选择题和填空题中考查,要想中考不丢分,这些方法你一定不能错过哦!
云南:我们省卷近2年连续考查,在选填、解答题均有涉及;昆明近4年考查2次,均在解答题涉及,我们求的面积都是不规则图形,需要转换为规则图形的面积的和差来求解。
山西:我们也是哦,而且我们解题还会涉及三角形全等的判定,结果一般转化为两个图形面积的和差求解。
河南:我们考查以填空题为主,考查的形式有:
①通过菱形或扇形旋转求阴影部分面积;
②在矩形中作圆求阴影部分面积;
③在扇形中作正方形求阴影部分面积;
④在扇形中结合直角三角形、等边三角形从而求阴影部分的面积。










求阴影部分面积的常用方法,有以下三种:
一、公式法 (所求面积的图形是规则图形)

二、和差法 (所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法


(2)构造和差法


三、等积变换法 (直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)
(1) 全等法


(2)对称法


(3) 平移法


(4) 旋转法


来源网络|侵删
赞 (0)