肠道修复:一种利用益生菌减少重金属积累的新思路

[1]

Liedekerke M, Prokop G, Rabl-Berger S, et al. Progress in the management of contaminated sites in Europe[R]. European: Joint Research Centre of the European Commission, 2014

[2]

Meers E, van Slycken S, Adriaensen K, et al. The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: a field experiment[J]. Chemosphere, 2010, 78(1): 35-41. DOI:10.1016/j.chemosphere.2009.08.015

[3]

Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075

[4]

Fu YH, Li FM, Guo SH, et al. Cadmium pollution in soil and rice plants in Zhangyizhan Town of Zhangshi irrigation area of Shenyang[J]. Chinese Journal of Ecology, 2017, 36(7): 1965-1972. (in Chinese)
付玉豪, 李凤梅, 郭书海, 等. 沈阳张士灌区彰驿站镇土壤与水稻植株镉污染分析[J]. 生态学杂志, 2017, 36(7): 1965-1972.

[5]

Liu B, Ai S, Zhang W, et al. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China[J]. Science of the Total Environment, 2017, 609: 822-829. DOI:10.1016/j.scitotenv.2017.07.215

[6]

Aoshima K. Itai-itai disease: cadmium-induced renal tubular osteomalacia[J]. Nihon Eiseigaku Zasshi. Japanese Journal of Hygiene, 2012, 67(4): 455-463. DOI:10.1265/jjh.67.455

[7]

Souiri M, Gammoudi I, Ouada HB, et al. Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals[J]. Procedia Chemistry, 2009, 1(1): 1027-1030. DOI:10.1016/j.proche.2009.07.256

[8]

Boopathy R. Factors limiting bioremediation technologies[J]. Bioresource Technology, 2000, 74(1): 63-67. DOI:10.1016/S0960-8524(99)00144-3

[9]

Bjørklund G, Mutter J, Aaseth J. Metal chelators and neurotoxicity: lead, mercury, and arsenic[J]. Archives of Toxicology, 2017, 91(12): 3787-3797. DOI:10.1007/s00204-017-2100-0

[10]

Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, et al. Mobilization of heavy metals by newer, therapeutically useful chelating agents[J]. Toxicology, 1995, 97(1/3): 23-38.

[11]

Pappas JB, Ahlquist JT, Allen EM, et al. Oral dimercaptosuccinic acid and ongoing exposure to lead: effects on heme synthesis and lead distribution in a rat model[J]. Toxicology and Applied Pharmacology, 1995, 133(1): 121-129. DOI:10.1006/taap.1995.1133

[12]

Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats[J]. Toxicology, 2009, 256(1/2): 128-134.

[13]

Yadav N, Dogra RK, Khan MY, et al. Prevention of acute cadmium toxicity by picroliv[J]. Human & Experimental Toxicology, 2005, 24(10): 529-536.

[14]

Vicente-Sánchez C, Egido J, Sánchez-González PD, et al. Effect of the flavonoid quercetin on cadmium-induced hepatotoxicity[J]. Food and Chemical Toxicology, 2008, 46(6): 2279-2287. DOI:10.1016/j.fct.2008.03.009

[15]

Ng SC, Hart AL, Kamm MA, et al. Mechanisms of action of probiotics: recent advances[J]. Inflammatory Bowel Diseases, 2009, 15(2): 300-310. DOI:10.1002/ibd.20602

[16]

Johnston BC, Supina AL, Ospina M, et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea[J]. The Cochrane Database of Systematic Reviews, 2007(2): CD004827.

[17]

Gao PF, Hou QC, Kwok LY, et al. Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin[J]. Science Bulletin, 2017, 62(2): 105-113. DOI:10.1016/j.scib.2017.01.001

[18]

Kullisaar T, Songisepp E, Mikelsaar M, et al. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects[J]. British Journal of Nutrition, 2003, 90(2): 449-456. DOI:10.1079/BJN2003896

[19]

Halttunen T, Collado MC, El-Nezami H, et al. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution[J]. Letters in Applied Microbiology, 2008, 46(2): 160-165.

[20]

Mrvčić J, Stanzer D, Bačun-Družina V, et al. Copper binding by lactic acid bacteria (LAB)[J]. Bioscience and Microflora, 2009, 28(1): 1-6. DOI:10.12938/bifidus.28.1

[21]

Zhai QX, Wang G, Zhao JX, et al. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice[J]. Applied and Environmental Microbiology, 2013, 79(5): 1508-1515. DOI:10.1128/AEM.03417-12

[22]

Yu LL, Zhai QX, Zhu JM, et al. Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia[J]. Ecotoxicology and Environmental Safety, 2017, 143: 307-314. DOI:10.1016/j.ecoenv.2017.05.023

[23]

Yi YJ, Lim JM, Gu SN, et al. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(Ⅱ) toxicity[J]. Journal of Microbiology, 2017, 55(4): 296-303. DOI:10.1007/s12275-017-6642-x

[24]

Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ[J]. Drug Metabolism and Disposition, 2003, 31(12): 1520-1525. DOI:10.1124/dmd.31.12.1520

[25]

Berg RD. The indigenous gastrointestinal microflora[J]. Trends in Microbiology, 1996, 4(11): 430-435. DOI:10.1016/0966-842X(96)10057-3

[26]

Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. DOI:10.1038/nature08821

[27]

Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249. DOI:10.1038/nature11552

[28]

Zhang WY, Guo R, Yang Y, et al. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei[J]. Toxicology Letters, 2016, 258: 192-197. DOI:10.1016/j.toxlet.2016.07.003

[29]

Zhai QX, Li TQ, Yu LL, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice[J]. Science Bulletin, 2017, 62(12): 831-840. DOI:10.1016/j.scib.2017.01.031

[30]

Namkung H, Gong J, Yu H, et al. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides[J]. Canadian Journal of Animal Science, 2006, 86(4): 511-522. DOI:10.4141/A05-075

[31]

Bisanz JE, Enos MK, Mwanga JR, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children[J]. mBio, 2014, 5(5): e01580-14.

[32]

Claus SP, Ellero SL, Berger B, et al. Colonization-induced host-gut microbial metabolic interaction[J]. mBio, 2011, 2(2): e00271-10.

[33]

Veglio F, Beolchini F. Removal of metals by biosorption: a review[J]. Hydrometallurgy, 1997, 44(3): 301-316. DOI:10.1016/S0304-386X(96)00059-X

[34]

Nagaoka M, Shibata H, Kimura I, et al. Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028[J]. Carbohydrate Research, 1995, 274: 245-249. DOI:10.1016/0008-6215(95)00076-6

[35]

Landersjö C, Yang Z, Huttunen E, et al. Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103)[J]. Biomacromolecules, 2002, 3(4): 880-884. DOI:10.1021/bm020040q

[36]

Teemu H, Seppo S, Jussi M, et al. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria[J]. International Journal of Food Microbiology, 2008, 125(2): 170-175.

[37]

Halttunen T, Salminen S, Tahvonen R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology, 2007, 114(1): 30-35.

[38]

Mishra R, Sinha V, Kannan A, et al. Reduction of chromium-VI by chromium resistant lactobacilli: a prospective bacterium for bioremediation[J]. Toxicology International, 2012, 19(1): 25-30. DOI:10.4103/0971-6580.94512

[39]

Yu LL, Zhai QX, Liu XM, et al. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1891-1900. DOI:10.1007/s00253-015-7135-7

[40]

Guo YX, Pan DD, Li H, et al. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis[J]. Food Chemistry, 2013, 138(1): 84-89. DOI:10.1016/j.foodchem.2012.10.029

[41]

Pulsawat W, Leksawasdi N, Rogers PL, et al. Anions effects on biosorption of Mn(Ⅱ) by extracellular polymeric substance (EPS) from Rhizobium etli[J]. Biotechnology Letters, 2003, 25(15): 1267-1270. DOI:10.1023/A:1025083116343

[42]

Li W, Xia XD, Chen XH, et al. Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides[J]. Journal of Biotechnology, 2015, 209: 14-15. DOI:10.1016/j.jbiotec.2015.05.021

[43]

Frece J, Kos B, Beganović J, et al. In vivo testing of functional properties of three selected probiotic strains[J]. World Journal of Microbiology & Biotechnology, 2005, 21(8/9): 1401-1408.

[44]

Åvall-Jääskeläinen S, Lindholm A, Palva A. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells[J]. Applied and Environmental Microbiology, 2003, 69(4): 2230-2236. DOI:10.1128/AEM.69.4.2230-2236.2003

[45]

Varg JE, Dussán J. Encapsulation and immobilization of the S-layer protein of Lysinibacillus sphaericus in an alginate matrix for chromium adsorption[J]. International Biodeterioration & Biodegradation, 2017, 116: 141-146.

[46]

Sabolić I, Breljak D, Škarica M, et al. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs[J]. BioMetals, 2010, 23(5): 897-926. DOI:10.1007/s10534-010-9351-z

[47]

Zhai QX, Wang G, Zhao JX, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration[J]. Applied and Environmental Microbiology, 2014, 80(13): 4063-4071. DOI:10.1128/AEM.00762-14

[48]

Kelleher SL, Casas I, Carbajal N, et al. Supplementation of infant formula with the probiotic Lactobacillus reuteri and zinc: impact on enteric infection and nutrition in infant rhesus monkeys[J]. Journal of Pediatric Gastroenterology and Nutrition, 2002, 35(2): 162-168. DOI:10.1097/00005176-200208000-00011

[49]

Kruger MC, Fear A, Chua WH, et al. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats[J]. Dairy Science & Technology, 2009, 89(3/4): 219-231.

[50]

Klobukowski J, Modzelewska-Kapitula M, Kornacki K. Calcium bioavailability from diets based on white cheese containing probiotics or synbiotics in short-time study in rats[J]. Pakistan Journal of Nutrition, 2009, 8(7): 933-936. DOI:10.3923/pjn.2009.933.936

[51]

Scholz-Ahrens KE, Ade P, Marten B, et al. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure[J]. The Journal of Nutrition, 2007, 137(3): 838S-846S. DOI:10.1093/jn/137.3.838S

[52]

Wu GF, Xiao XP, Feng PY, et al. Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1[J]. Scientific Reports, 2017, 7(2): 15000.

[53]

Nordberg M, Nordberg GF. Toxicological aspects of metallothionein[J]. Cellular and Molecular Biology (Noisy-le-Grand, France), 2000, 46(2): 451-463.

[54]

Formigari A, Irato P, Santon A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 146(4): 443-459.

[55]

Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis[J]. Journal of Allergy and Clinical Immunology, 2009, 124(1): 21-22. DOI:10.1016/j.jaci.2009.06.003

[56]

Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease[J]. Physiological Reviews, 2002, 82(1): 245-289. DOI:10.1152/physrev.00026.2001

[57]

Bröer S. Amino acid transport across mammalian intestinal and renal epithelia[J]. Physiological Reviews, 2008, 88(1): 249-286. DOI:10.1152/physrev.00018.2006

[58]

Ferraris RP, Diamond J. Regulation of intestinal sugar transport[J]. Physiological Reviews, 1997, 77(1): 257-302. DOI:10.1152/physrev.1997.77.1.257

[59]

Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport[J]. Annual Review of Physiology, 2006, 68: 403-429. DOI:10.1146/annurev.physiol.68.040104.131404

[60]

Farquhar MG, Palade GE. Junctional complexes in various epithelia[J]. The Journal of Cell Biology, 1963, 17(2): 375-412. DOI:10.1083/jcb.17.2.375

[61]

Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia[J]. Toxicology and Applied Pharmacology, 2003, 186(3): 163-188. DOI:10.1016/S0041-008X(02)00021-2

[62]

Pineton de Chambrun G, Body-Malapel M, Frey-Wagner I, et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice[J]. Mucosal Immunology, 2014, 7(3): 589-601. DOI:10.1038/mi.2013.78

[63]

Zhai QX, Tian FW, Zhao JX, et al. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier[J]. Applied and Environmental Microbiology, 2016, 82(14): 4429-4440. DOI:10.1128/AEM.00695-16

[64]

Yu LL, Zhai QX, Tian FW, et al. Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress[J]. Nutrients, 2016, 8(12): 783. DOI:10.3390/nu8120783

[65]

Buford TW. (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease[J]. Microbiome, 2017, 5(1): 80.

[66]

Breton J, Daniel C, Dewulf J, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure[J]. Toxicology Letters, 2013, 222(2): 132-138. DOI:10.1016/j.toxlet.2013.07.021

[67]

Ahmed M, Prasad J, Gill H, et al. Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects[J]. The Journal of Nutrition, Health & Aging, 2007, 11(1): 26-31.

[68]

Bagarolli RA, Tobar N, Oliveira AG, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice[J]. The Journal of Nutritional Biochemistry, 2017, 50: 16-25. DOI:10.1016/j.jnutbio.2017.08.006

[69]

Tzirogiannis KN, Panoutsopoulos GI, Demonakou MD, et al. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis[J]. Archives of Toxicology, 2003, 77(12): 694-701. DOI:10.1007/s00204-003-0499-y

[70]

Sharma S, Chaturvedi J, Chaudhari BP, et al. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity[J]. Nutrition, 2012, 28(2): 173-181. DOI:10.1016/j.nut.2011.02.012

[71]

Farag I, Abdel-Aziz K, Nada S, et al. Modulation of ochratoxin-induced oxidative stress, genotoxicity and spermatotoxic alterations by Lactobacillus rhamnosus GG in male Albino mice[J]. Journal of American Science, 2010, 6(12): 575-587.

[72]

Zhang Y, Du RT, Wang LF, et al. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats[J]. European Food Research and Technology, 2010, 231(1): 151-158. DOI:10.1007/s00217-010-1255-1

[73]

Kullisaar T, Songisepp E, Aunapuu M, et al. Complete glutathione system in probiotic Lactobacillus fermentum ME-3[J]. Applied Biochemistry and Microbiology, 2010, 46(5): 481-486. DOI:10.1134/S0003683810050030

[74]

Mikelsaar M, Zilmer M. Lactobacillus fermentum ME-3–an antimicrobial and antioxidative probiotic[J]. Microbial Ecology in Health and Disease, 2009, 21(1): 1-27.

[75]

Tian FW, Zhai QX, Zhao JX, et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice[J]. Biological Trace Element Research, 2012, 150(1/3): 264-271.

[76]

Monachese M, Burton JP, Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?[J]. Applied and Environmental Microbiology, 2012, 78(18): 6397-6404. DOI:10.1128/AEM.01665-12

[77]

Kesler SE, Simon AC. Mineral Resources, Economics and the Environment[M]. Cambridge: Cambridge University Press, 2015: 285.

[78]

Satarug S, Garrett SH, Sens MA, et al. Cadmium, environmental exposure, and health outcomes[J]. Ciencia & Saude Coletiva, 2011, 16(5): 2587-2602.

[79]

Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney[J]. BioMetals, 2010, 23(5): 783-792. DOI:10.1007/s10534-010-9328-y

[80]

Inturri R, Molinaro A, di Lorenzo F, et al. Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum[J]. Carbohydrate Polymers, 2017, 174: 1172-1180. DOI:10.1016/j.carbpol.2017.07.039

[81]

Gerbino E, Mobili P, Tymczyszyn E, et al. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions[J]. Journal of Molecular Structure, 2011, 987(1/3): 186-192.

[82]

da Costa HMF, Rodrigues RCS, da Glória Chiarello de Mattos M, et al. Evaluation of the adaptation interface of one-piece implant-supported superstructures obtained in Ni-Cr-Ti and Pd-Ag alloys[J]. Brazilian Dental Journal, 2003, 14(3): 197-202. DOI:10.1590/S0103-64402003000300011

[83]

Ackerley DF, Gonzalez CF, Park CH, et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli[J]. Applied and Environmental Microbiology, 2004, 70(2): 873-882. DOI:10.1128/AEM.70.2.873-882.2004

[84]

Miretzky P, Cirelli AF. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials: a review[J]. Journal of Hazardous Materials, 2010, 180(1/3): 1-19.

[85]

Upreti RK, Shrivastava R, Chaturvedi UC. Gut microflora & toxic metals: chromium as a model[J]. The Indian Journal of Medical Research, 2004, 119(2): 49-59.

[86]

Fewtrell LJ, Prüss-Üstün A, Landrigan P, et al. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure[J]. Environmental Research, 2004, 94(2): 120-133. DOI:10.1016/S0013-9351(03)00132-4

[87]

Solon O, Riddell TJ, Quimbo SA, et al. Associations between cognitive function, blood lead concentration, and nutrition among children in the central Philippines[J]. The Journal of Pediatrics, 2008, 152(2): 237-243. DOI:10.1016/j.jpeds.2007.09.008

[88]

Muhammad Z, Ramzan R, Zhang S, et al. Comparative assessment of the bioremedial potentials of potato resistant starch-based microencapsulated and non-encapsulated Lactobacillus plantarum to alleviate the effects of chronic lead toxicity[J]. Frontiers in Microbiology, 2018, 9: 1306. DOI:10.3389/fmicb.2018.01306

[89]

Ordemann JM, Austin RN. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health[J]. Metallomics, 2016, 8(6): 579-588. DOI:10.1039/C5MT00300H

[90]

Li N, Hou YH, Ma DD, et al. Lead accumulation, oxidative damage and histopathological alteration in testes and accessory glands of freshwater crab, Sinopotamon henanense, induced by acute lead exposure[J]. Ecotoxicology and Environmental Safety, 2015, 117: 20-27. DOI:10.1016/j.ecoenv.2015.03.019

[91]

Bueno BYM, Torem ML, Molina F, et al. Biosorption of lead(Ⅱ), chromium(Ⅲ) and copper(Ⅱ) by R. opacus: Equilibrium and kinetic studies[J]. Minerals Engineering, 2008, 21(1): 65-75. DOI:10.1016/j.mineng.2007.08.013

[92]

Yang JP, Zhao YC, Zhang SB, et al. Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF[J]. Fuel Processing Technology, 2017, 167: 263-270. DOI:10.1016/j.fuproc.2017.07.016

[93]

Gasong BT, Abrian S, Setyabudi FMCS. Methylmercury biosorption activity by methylmercury-resistant lactic acid bacteria isolated from west sekotong, Indonesia[J]. HAYATI Journal of Biosciences, 2017, 24(4): 182-186. DOI:10.1016/j.hjb.2017.10.001

[94]

Falandysz J, Gucia M, Brzostowski A, et al. Content and bioconcentration of mercury in mushrooms from northern Poland[J]. Food Additives & Contaminants, 2003, 20(3): 247-253.

[95]

Zhao FL, Chen X, Guo W, et al. Clinicopathological analysis on mercury poisoning-associated nephritic syndrome[J]. China Occupational Medicine, 2016, 43(3): 281-284. (in Chinese)
赵凤玲, 陈新, 郭伟, 等. 汞中毒性肾病综合征临床病理分析[J]. 中国职业医学, 2016, 43(3): 281-284.

[96]

Kinoshita H, Sohma Y, Ohtake F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701-709. DOI:10.1016/j.resmic.2013.04.004

[97]

Jadán-Piedra C, Alcántara C, Monedero V, et al. The use of lactic acid bacteria to reduce mercury bioaccessibility[J]. Food Chemistry, 2017, 228: 158-166. DOI:10.1016/j.foodchem.2017.01.157

[98]

Nayak P. Aluminum: impacts and disease[J]. Environmental Research, 2002, 89(2): 101-115. DOI:10.1006/enrs.2002.4352

[99]

Aguilar F, Autrup H, Barlow S, et al. Safety of aluminium from dietary intake scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC)[J]. The EFSA Journal, 2008, 754: 1-34.

[100]

Vignal C, Desreumaux P, Body-Malapel M. Gut: An underestimated target organ for Aluminum[J]. Morphologie, 2016, 100(329): 75-84. DOI:10.1016/j.morpho.2016.01.003

[101]

Molloy DW, Standish TI, Nieboer E, et al. Effects of acute exposure to aluminum on cognition in humans[J]. Journal of Toxicology and Environmental Health, Part A, 2007, 70(23): 2011-2019. DOI:10.1080/15287390701551142

[102]

Mahieu ST, Gionotti M, Millen N, et al. Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats[J]. Archives of Toxicology, 2003, 77(11): 605-612. DOI:10.1007/s00204-003-0496-1

[103]

Shaw CA, Tomljenovic L. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity[J]. Immunologic Research, 2013, 56(2/3): 304-316.

[104]

Tian FW, Yu LL, Zhai QX, et al. The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice[J]. PLoS One, 2017, 12(4): e0175398. DOI:10.1371/journal.pone.0175398
(0)

相关推荐