R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析

原文链接:http://tecdat.cn/?p=24162

在这个例子中,我们考虑马尔可夫转换随机波动率模型。

统计模型

设 yt为因变量,xt 为 yt 未观察到的对数波动率。对于 t≤tmax,随机波动率模型定义如下

状态变量 ct 遵循具有转移概率的二状态马尔可夫过程

N(m,σ2)表示均值 m 和方差 σ2的正态分布。

BUGS语言统计模型

文件内容 'vol.bug'

dlfie = 'vol.bug' #BUGS模型文件名

设置

设置随机数生成器种子以实现可重复性

set.seed(0)

加载模型和数据

模型参数

dt = lst(t\_mx=t\_mx, sa=sima,
            alha=alpa, phi=pi, pi=pi, c0=c0, x0=x0)

解析编译BUGS模型,以及样本数据

modl(mol\_le, ata,sl\_da=T)

绘制数据

plot(1:tmx, y, tpe='l',xx = 'n')

对数收益率


点击标题查阅往期内容

Python随机波动率(SV)模型对标普500指数时间序列波动性预测

左右滑动查看更多

01

02

03

04

序列蒙特卡罗_Sequential Monte Carlo_

运行

n= 5000 # 粒子的数量
var= c('x') # 要监测的变量
out = smc(moe, vra, n)

模型诊断

diagnosis(out)

绘图平滑 ESS

plt(ess, tpe='l')
lins(1:ta, ep(0,tmx))

SMC:SESS

绘制加权粒子

plt(1:tax, out,)
for (t in 1:_ax) {
  vl = uiq(valest,\])
  wit = sply(vl, UN=(x) {
    id = utm$$sles\[t,\] == x
    rtrn(sm(wiht\[t,ind\]))
  })
  pints(va)
}
lies(1t_x, at$xue)

粒子(平滑)

汇总统计

summary(out)

绘图滤波估计

men = mean
qan = quant

x = c(1:tmx, _a:1)
y = c(fnt, ev(x__qat))
plot(x, y)
pln(x, y, col)
lines(1:tma,x_ean)

滤波估计

绘图平滑估计

plt(x,y, type='')

polgon(x, y)
lins(1:tmx, mean)

平滑估计

边缘滤波和平滑密度

denty(out)
indx = c(5, 10, 15)

for (k in 1:legh) {
  inex
  plt(x)
  pints(xtrue\[k\])
}

边缘后验

粒子独立 Metropolis-Hastings

运行

mh = mit(mol, vre)

mh(bm, brn, prt) # 预烧迭代

mh(bh, ni, n_at, hn=tn) # 返回样本

一些汇总统计

smay(otmh, pro=c(.025, .975))

后验均值和分位数

mean
quant
plot(x, y)

polo(x, y, border=NA)
lis(1:tax, mean)

后验均值和分位数

MCMC 样本的踪迹图

for (k in 1:length {
  tk = idx\[k\]
  plot(out\[tk,\]
    )
  points(0, xtetk)
}

跟踪样本

后验直方图

for (k in 1:lngh) {
  k = inex\[k\]
  hit(mh$x\[t,\])
  poits(true\[t\])
}

后边缘直方图

后验的核密度估计

for (k in 1:lnth(ie)) {
 idx\[k\]
  desty(out\[t,\])
  plt(eim)
  poit(xtu\[t\])
}

KDE 后验边缘估计

敏感性分析

我们想研究对参数 α 值的敏感性

算法参数

nr = 50 # 粒子的数量
gd <- seq(-5,2,.2) # 一个成分的数值网格
A = rep(grd, tes=leg) # 第一个成分的值
B = rep(grd, eah=lnh) # 第二个成分的值
vaue = ist('lph' = rid(A, B))

运行灵敏度分析

sny(oel,aaval, ar)

绘制对数边缘似然和惩罚对数边缘似然

# 通过阈值处理避免标准化问题
thr = -40
z = atx(mx(thr, utike), row=enth(rd))

plot(z, row=grd, col=grd,
          at=sq(thr))

敏感性:对数似然


(0)

相关推荐