杨-米尔斯理论说了啥?为啥说这是杨振宁超越他诺奖的贡献(上)
这下子很多人就懵圈了。杨-米尔斯理论是啥?上学的时候老师肯定没讲过,去百度上搜,搜出来结果更是一头雾水,那都是只有懂的人才能看得懂的东西。隐隐约约能感觉到杨振宁先生好像做了什么非常了不起的工作,但是要具体说他做了啥,在科学上有啥意义,就迷糊了。
那杨-米尔斯理论到底重不重要?重要,当然重要,绝对的重要,这是现代规范场论和粒子物理标准模型的基础。在讲宇称不守恒的时候我就说过,杨-米尔斯理论是一个背景更加宏大的故事。宇称不守恒虽然也影响了物理学的方方面面,但是我们把它单独拎出来还是马马虎虎能讲清楚的,而杨-米尔斯理论就不一样了,想要把它搞清楚,我们得把视角上升到整个物理学发展的高度上来,因为这是一个跟物理学主线密切相关的故事。
01物理学的主线
物理学家到底在研究什么?
大自然中有各种各样的现象,有跟物体运动相关的,有跟声音、光、热相关的,有跟闪电、磁铁相关的,也有跟放射性相关的等等。物理学家们就去研究各种现象背后的规律,然后他们得到了一堆关于运动啊,声学、光学、热学之类的定律,然后物理学家们就满意了么?
当然不满意,为啥?定律太多了!
你想想,如果每一种自然现象都用一种专门的定律来描述它,那得有多少“各自为政”的定律啊。于是物理学家们就想:我能不能用更少的定律来描述更多的现象呢?有没有可能有两种现象表面上看起来毫不相关,但是在更深层次上却可以用同一种理论去描述?有没有可能最终用一套理论来描述所有的已知的事情?
这个事情,本质上就跟秦始皇要统一六国一样,我决不允许还有其他六个各自为政的国家存在,必须让所有人遵守同样的法律,服从同一个政令,用同样的语言和文字,这样才和谐。物理学家的统一之路,也是这样浩浩荡荡地开始的。
牛顿统一了天上和地上的力,麦克斯韦统一了电、磁、光。到了19世纪,随着人们对微观世界研究的深入,许多在宏观上风牛马不相及的东西,在微观层面上却很好的统一了起来。比如我们熟悉的支持力、弹力、摩擦力之类的东西,在宏观上它们确实是不同的东西,但是到了微观一看:这些杂七杂八的力全都是分子间作用力造成的,而分子间作用力本质上就是电磁力。并且,这些分子、原子运动的快慢,在宏观层面上居然体现为温度,然后热现象就变成了一种力学现象。
于是,到了19世纪末,人类所有已知现象背后的力就都归结为引力和电磁力,其中引力由牛顿的万有引力定律描述,电磁力由麦克斯韦方程组描述。但尴尬的是,麦克斯韦方程组和牛顿力学这套框架居然是矛盾的,那么到底是麦克斯韦方程组有问题还是牛顿力学的这套框架有问题呢?
爱因斯坦说麦克斯韦方程组没毛病,牛顿的框架有问题。于是爱因斯坦升级了一下牛顿的这套框架,在新框架下继续跟麦克斯韦方程组愉快的玩耍,这套升级后的新框架就叫狭义相对论。
在狭义相对论这个新框架里,麦克斯韦方程组不用做任何修改就能直接入驻,这是一等公民。另外,牛顿力学里有些东西无法直接搬过来,但是稍微修改一下就可以很愉快的搬到这个新框架里来,比如动量守恒定律(直接用牛顿力学里动量的定义,在狭义相对论里动量是不守恒的,需要修改一下就守恒了),这是二等公民。还有一类东西,无论怎么改都无法让它适应这个新框架,这是刁民。
刁民让人很头痛啊,不过还好,虽然有刁民,但是刁民的数量不多,就一个:引力。牛顿的万有引力定律在牛顿力学那个框架里玩得很愉快,但是它骨头很硬,不管怎么改,它就是宁死不服狭义相对论这个新框架,那要怎么办呢?当然,我们可以继续改,我们相信虽然现在引力它不服,但是以后总能找到让它服气的改法。但是爱因斯坦另辟蹊径,他说引力这小子不服改我就不改了,然后他另外提出了一套新理论来描述引力,相当于单独给引力盖了一栋别墅。结果这套新引力理论极其成功,而且爱因斯坦提出这套新理论的方式跟以往的物理学家们提出新理论的方式完全不一样,这种新手法带来梦幻般的成功惊呆了全世界的物理学家,然后爱因斯坦就被捧上天了,这套新理论就叫广义相对论。
爱因斯坦用广义相对论驯服了引力,用狭义相对论安置好了电磁力之后,接下来的路就很明显了:统一引力和电磁力,就像当年麦克斯韦统一电、磁、光那样,毕竟用一套理论解释所以的物理现象是物理学家们的终极梦想。但是,爱因斯坦穷尽他的后半生都没能统一引力和电磁力。不仅如此,随着实验仪器的进步,人们撬开了原子核,在原子核内部又发现了两种新的力:强力和弱力。
这下可好,不但没能统一引力和电磁力,居然又冒出来两种新的力。所以,我们现在的局面变成了有四种力:引力、电磁力、强力和弱力。其中,引力用广义相对论描述,电磁力用麦克斯韦方程组(量子化之后用量子电动力学QED)描述,强力和弱力都还不知道怎么描述,统一就更别谈了。
到了这里,我们这篇文章的主角杨-米尔斯理论终于要登场了,我先把结论告诉大家:现在强力就是用杨-米尔斯理论描述的,弱力和电磁力现在已经实现了完全的统一,统一之后的电弱力也是用杨-尔斯理论描述的。也就是说,在四种基本力里,除了引力,其它三种力都是用杨-米尔斯理论描述的,所以你说杨-米尔斯理论有多重要?
同时,我们也要知道,杨-米尔斯理论是一套非常基础的理论,它提供了一个非常精妙的模型,但是理论本身并不会告诉你强力和电弱力具体该怎样怎样。盖尔曼他们把杨-米尔斯理论用在强力身上,结合强力各种具体的情况,最后得到的量子色动力学(QCD)才是完整描述强力的理论。格拉肖、温伯格和萨拉姆等人用来统一弱力和电磁力的弱电统一理论跟杨-米尔斯理论之间也是这种关系。他们之间的具体关系我们后面再说,这里先了解这些。
以上就是一部极简的物理学统一史,只有站在这样的高度,我们才能对杨-米尔斯理论有个比较清晰的定位。统一是物理学的主线,是无数物理学家们孜孜以求的目标,杨-米尔斯能在这条主线里占有一席之地,其重要性不言而喻。有了这样的认知,我们才能继续我们下面的故事。
在物理学的统一史里,有一个人的工作至关重要,这个重要倒不是说他提出了多重要的理论(虽然他的理论也极其重要),而是他颠倒了物理学的研究方式。以他为分水岭,物理学家探索世界的方式发生了根本的改变。正是这种改变,让20世纪的物理学家们能够游刃有余的处理比之前复杂得多得多的物理世界,让他们能够大胆的预言各种以前想都不敢想的东西。这种思想也极其深刻的影响了杨振宁先生,杨振宁先生反过来又把这种思想发扬光大,最后产生了精妙绝伦的杨-米尔斯理论。
那么这个人是谁呢?没错,他就是爱因斯坦。那么,爱因斯坦究发现了什么,以至于颠倒了物理学的研究方式呢?
02被颠倒的物理学
大家先想一想,爱因斯坦之前的物理学家是怎么做研究的?
他们去做各种实验,去测量各种数据,然后去研究这些数据里的规律,最后用一组数学公式来“解释”这些数据,如果解释得非常好,他们就认为得到了描述这种现象的物理定律,然后顺带着发现了隐藏在理论里的某些性质,比如某种对称性。在这里我们能清晰的看到实验-理论-对称性这样一条线,这也符合我们通常的理解。
但是,爱因斯坦把这个过程给颠倒了,他发现上面的过程在处理比较简单的问题的时候还行,但是当问题变得比较复杂,当实验不再能提供足够多的数据的时候,按照上面的方式处理问题简直是一种灾难。
比如,牛顿发现万有引力定律的时候,开普勒从第谷观测的海量天文数据里归纳出了行星运动的三大定律,然后牛顿从这里面慢慢猜出了引力和距离的平方反比关系,这个还马马虎虎可以猜出来。我们再来看看牛顿引力理论的升级版-广义相对论的情况:
上图是广义相对论的引力场方程,你告诉我这种复杂的方程要怎样从实验数据里去凑出公式来?况且,广义相对论在我们日常生活里跟牛顿引力的结果几乎一样,第谷观测了那么多天文数据可以让开普勒和牛顿去猜公式,但是在20世纪初有啥数据让你去猜广义相对论?水星近日点进动问题是极少数不符合牛顿引力理论的,但是人们面对这种问题,普遍第一反应是在水星里面还有一颗尚未发现的小行星,而不是用了几百年的牛顿引力有问题。退一万步说,就算你当时认为那是因为牛顿引力不够精确造成的,但是就这样一个数据,你怎么可能从中归纳出广义相对论的场方程?
经过一连串的深度碰壁之后,爱因斯坦意识到当理论变得复杂的时候,试图从实验去归纳出理论的方式是行不通的,洛伦兹不就是被迈克尔逊-莫雷实验牵着鼻子走,最终才错失发现狭义相对论的么?实验不可靠,那么爱因斯坦就要找更加可靠的东西,这个更加可靠的东西就是对称性!
于是爱因斯坦在物理学的研究方式上来了一场哥白尼式的革命:他先通过观察分析找到一个十分可靠的对称性,然后要求新的理论具有这种对称性,从而直接从数学上推导出它的方程,再用实验数据来验证他的理论是否正确。在这里,原来的实验-理论-对称性变成了对称性-理论-实验,对称性从原来理论的副产品变成了决定理论的核心,实验则从原来的归纳理论的基础变成了验证理论的工具。理解这一转变非常的重要,后面的物理学家都是这么干的,我们要先把思路调对,不然到时候就容易出现各种不适应。
爱因斯坦利用这样思路,先确定了广义坐标不变性,然后从这个对称性出发得到了一套新的引力理论,这就是广义相对论。这也是为什么其他科学家看到广义相对论之后一脸懵逼,而且说如果不是爱因斯坦,恐怕50年之内都不会有人发现这套理论的原因。爱因斯坦是第一个这么反过来干的,广义相对论大获成功之后人们才发现原来理论研究还可以这么干,这种思想后来被杨振宁先生发扬光大,并形成了“对称决定相互作用”这样的共识。
爱因斯坦完成广义相对论之后,继续朝着更伟大的目标“统一场论(统一引力和电磁力)”进军,在强力和弱力还没有被发现的年代,能够统一引力和电磁力的理论似乎就是终极理论了。我们现在都知道爱因斯坦终其后半生都未能完成统一场论,但是统一场论的巨大光环和爱因斯坦自带的超级偶像的磁场还是吸引了一些物理学家,也带来了一些有意思的新想法。
03规范不变性
我们再来理一理爱因斯坦的思路:爱因斯坦把对称性放在更加基础的位置,然后从对称性导出新的理论。他从洛伦兹不变性导出了狭义相对论,从广义坐标不变性导出了广义相对论,现在我们试图统一引力和电磁力,那么,有一个问题就会很自然地被提上日程:究竟什么样的一种对称性会导出电磁理论呢?
这个问题很自然吧,但是它的答案却不是那么好找的,这么容易就让你找到导致电磁理论的不变性,上帝岂不是太没面子了?麦克斯韦方程组是从前人的实验经验定律总结出来的,并没有指定什么具体的对称性,那要怎么办呢?
不着急,诺特定理告诉我们对称性跟守恒定律是一一对应的,我现在不是要找导出电磁理论的对称性么?那么我就去看看电磁理论里有什么守恒定律呗,最好还是电磁理论里特有的。
说到电磁理论里特有的守恒定律,那肯定就是电荷守恒啊。电荷肯定是只有电磁学才有的东西,而且电荷守恒定律又是这么明显,不管是不是它,它肯定是嫌疑最大的那个,必须抓起来严刑拷问,看看跟它私通的对称性到底是什么。
在外尔的严刑逼供下,电荷守恒招了:跟电荷守恒相对应的对称性是波函数的相位不变性,(在量子力学里粒子的状态是用波函数来描述的,既然波那肯定就有相位),但是由于历史原因,这个相位不变性我们一直称为规范不变性,也叫规范对称性。
这个相位不变性,或者说规范不变性,我们怎么理解呢?为什么麦克斯韦的电磁理论里会有规范不变性呢?如果从公式里看就非常的简单,就是我给它这里做了一个相位变换,它另一个地方就产生了一个相反的相位,总体上刚好给抵消了;如果从直觉上去感觉,你可以想想,在量子力学里,波函数的模的平方代表在这里发现该粒子的概率,你一个波函数的相位不论怎么变,它的模的平方是不会变的啊。如果你还想继续深挖,我推荐你去看一看格里菲斯的《粒子物理导论》(在公众号回复“粒子物理导论”可以获取这本书的电子版),他在第十章里专门用了一章来讨论规范理论,而且很通俗。
总的来说就是:规范不变性导致电荷守恒。
但是事情还没完,外尔接着发现了一件真正让人吃惊的事:我们上面说规范不变性导致电荷守恒,这里说的规范不变性指的是整体规范不变性,但是外尔发现如果我们要求这个规范不变性是局域的,那么我们就不得不包括电磁场。
泡利针对这个做了进一步的研究,1941年,泡利发表了一篇论文,他在论文里严格的证明了:U(1)群整体规范对称性对应电荷守恒,它的局域规范对称性产生电磁理论,甚至可以直接从它推导出麦克斯韦方程组。U(1)群是群论里的一种群的名字,叫酉群(unitary group),或者幺正群,数字1表示这是1阶酉群,我们现在只需要知道对称性在数学上就是用群论来描述,而且通常不同的理论对应不同的群(这里电磁理论就对应U(1)群)就行了。
也就是说,我们现在终于找到了决定电磁理论的对称性,它就是U(1)群的局域规范对称性。U(1)群和规范对称我前面都解释了,那么问题的关键就落在对称性的整体和局域的区别上了。
04整体对称和局域对称
整体对称,顾名思义,如果一个物体所有的部分都按照一个步调变换,那么这种变换就是整体的。打个比方,舞台上所有的演员都同步地向前、向后走,或者全都做同样的动作,观众看着演员都整整齐齐的,觉得所有人都像是一个人的复制品一样,这样的变换就是整体的。如果经过这样一种整体的变换之后,它还能保持某种不变性,我们就说它具有整体对称性。
有了整体对称的概念,局域对称就好理解了,类比一下,如果一个物体不同的部分按照不同的步调变换,那么这种变换就是局域的。还是以舞台为例,导演为了使表演更具有个性,他想让演员表现出波浪的样子,或者是千手观音那样,再或者是形成各种不断变化的图案,这种时候每个人的动作变换就不一样了吧,也不会说所有人都像一个人的复制品一样了,这时候这种变换就是局域的。因为它不再是所有的人按照一个规则变换,而是局部的每个人都有他局域特有的变换规则。同样的,如果经过这样一种局域的变换之后,它还能保持某种不变性,我们就说它具有局域对称性。
从上面的情况我们看出来,整体变换要简单一些,所有的地方都按照同样的规则变换,而局域变换就复杂多了,不同的地方按照不同的规则变换。所以,很明显,如果你要求一套理论具有某种局域对称,这比要求它具有整体对称复杂得多,局域变换对物理定律形式的要求就更加严格一些。但是,你一旦让它满足局域对称了,它能给你的回报也会多得多。
还是电磁理论的例子:整体规范对称性下我们只能得到电荷守恒,但是一旦要求它具有局域规范对称性,整个电磁理论,甚至麦克斯韦方程组都直接得到了。电荷守恒和麦克斯韦方程组,这就是整体对称和局域对称给的不同回报,孰轻孰重差别很明显吧?电荷守恒是可以直接从麦克斯韦方程组里推导出来的。
以上是偏科普的解释,从数学的角度来说,整体变换就是你所有的变换跟时空坐标无关,局域变换就是你的变换是一个跟时空坐标相关的函数。跟时空坐标相关的函数,其实就是说不同的时空点,这个函数值是不一样的,也就是说变换不一样。
不管从哪种解释(从数学更容易),我们其实都可以看出:整体变换其实只是局域变换的一种特例。局域变换里变的是一个跟时空坐标相关的函数,但是这个函数的值也可以是一个定值啊,这时候局域变换就退化成整体变换了。
那么,一个大胆的想法就产生了:在电磁理论里,整体规范对称性对应着电荷守恒,但是我一旦要求这个整体规范对称性在局域下也成立,我立马就得到了整个电磁理论。那么我可不可以把这种思想推广到其他领域呢?比如强力、弱力,有没有可能同样要求某种整体对称性在局域成立,然后可以直接产生强力、弱力的相关理论呢?
这是一个十分诱人的想法,杨振宁从他读研究生的时候就在开始琢磨这个事,但是一直到十几年后的1954年,也就是他32岁的时候才有结果,这个结果就是大名鼎鼎的非阿贝尔规范场论,也叫杨-米尔斯理论。
05杨振宁的“品位”
在我们正式讲杨-米尔斯理论之前,我们先来聊一聊杨振宁先生的品位。
有一个曾经跟爱因斯坦共事过的物理学家这样回忆:我记得最清楚的是,当我提出一个自认为有道理的设想时,爱因斯坦并不与我争辩,而只是说:“啊,多丑!”。只要他觉得一个方程是丑的,他就对之完全失去了兴趣,并且不能理解为什么还会有人愿意在上面花这么多时间。他深信,美是探索理论物理中重要结果的一个指导原则。
爱因斯坦自己也说:“我想知道上帝是如何创造这个世界的。对这个或那个现象、这个或那个元素的谱我并不感兴趣。我想知道的是他的思想,其他的都只是细节问题。”
爱因斯坦对一个理论的美学要求达到了一种不可思议的地步。从麦克斯韦电磁学里发现的洛伦兹不变性成了狭义相对论的核心,但是爱因斯坦觉得狭义相对论偏爱惯性系,这点让他很不满。他觉得洛伦兹不变性的范围太窄了,上帝不应该让这么美的思想之局限在惯性系里,所以他要以一个在所有参考系里都成立的不变性为前提,重新构造一个新的理论,这就是广义坐标不变性和广义相对论的来源。
说白了,爱因斯坦就是觉得:这么好的对称性,这么美的想法,如果上帝你不选用它作为构造世界的理论,那上帝简直就是瞎子。爱因斯坦深信上帝一定是用简单和美来构造这个世界的,所以我从如此简单和美的对称出发构造的理论一定是有意义的。
杨振宁先生的品位,跟爱因斯坦几乎是一模一样的,这也是一位对理论的美学要求达到了不可思议地步的人。杨振宁先生最为崇敬的物理学家就是爱因斯坦,他对爱因斯坦颠倒物理学的研究方式,把对称性放在极为重要的位置,以及对科学理论简单和美的追求都有非常深刻的领悟。除此之外,杨振宁还有一个一般物理学家不具备的优势:他有一个非常厉害的数学家老爹,这就使得杨振宁的数学水平比同时代的物理学家高出很多。数学在现代物理中有多重要不用我多说,这就叫凭实力拼爹~
杨振宁先生是父亲杨武之是著名的数学家和数学教育家,是数学教育家就意味着他会以一种非常恰当的方式让杨振宁接触并喜欢数学。杨振宁还是中学生的时候,他就从父亲那里接触到了群论的基础原理。诺特定理的发现让物理学家们重视对称性,但是他们对群论这种对称性的数学语言却没有足够的重视。当时很多物理学家都反对把群论这种过于抽象的数学语言引入到物理学里来,怼神泡利直接把群论嘲讽为“群祸”,薛定谔表示附议,爱因斯坦也只是把群论当做一个细枝末节的工作。
幸运的是,杨武之恰好是擅长群论的数学家,他在清华大学开过群论的课程,当时华罗庚、陈省身这些未来的数学大师都来听过课。有这样的父亲,杨振宁对群论肯定不陌生,而杨振宁在西南联大学士论文的题目选的就是《群论和多原子分子的振动》,他的老师吴大猷就借此引导他从群论开始关注物理学的对称性问题。
所以,年纪轻轻的杨振宁就已经非常重视物理学的对称性问题,并且在那个其他物理学家还在普遍怀疑群论的年代,他已经很好的掌握了群论这种研究对称性的重要工具,这无疑是非常幸运的。有这样的杨振宁,他会对泡利在1941年发表的那篇论文感兴趣是很自然的。
06对称性的推广
我们把眼光再拉回20世纪四五十年代,这时候人们已经知道自然界除了电磁力和引力之外还有强力和弱力,强力把质子和中子黏在一起(不然质子都带正电,同性相斥早就把原子核拆了),弱力在原子核衰变的时候发挥作用(比如中子衰变变成质子、电子和反中微子的β衰变)。但是那时候对强力和弱力的认识都还非常的肤浅,汤川秀树的介子理论、费米的四费米子理论都能只能解释强力、弱力的一些现象,还有大把的问题他们没法解决,谁都知道这些理论只是关于强力、弱力的一个过渡理论,最后肯定要被更加精确的理论取代,但是该怎样去寻找更加精确的理论,大家心里也都没谱,没有一个十分清晰的思路。
但是杨振宁先生那时候的思路确是很清晰的:他对理论的美学要求是跟爱因斯坦一样苛刻的,因此,任何只是试图粗糙、唯象的模拟强力、弱力的理论他都懒得搭理(就跟爱因斯坦嫌弃它们长得丑一样)。然后,加上数学大牛的父亲和恩师吴大猷的悉心栽培,杨振宁那先生对数学的群论、物理学的对称性都有非常深刻的理解,所以他就特别理解外尔那种想法的重要性。所以,他要不惜一切代价的扩展它。
外尔发现U(1)群整体规范对称性对应电荷守恒,但是,一旦我把这个整体对称性推广到局域,我就可以直接得到整个电磁理论。这种想法对物理学上有“洁癖”的杨振宁来说,吸引力实在是太大了,因为它实在是太美太简洁,给出的回报也太丰厚。如果我在强力、弱力里通过把某种规范对称性从整体推广到局域,是不是也可以得到关于强力、弱力的理论呢?
我们从事后诸葛亮的角度看,好像这一切都显得很自然,好像只要是物理学家都应该想到这个。但其实不然,且不说当爱因斯坦在搞统一场论的时候,他就已经被所谓的主流物理学界给边缘化了,外尔跟着爱因斯坦搞统一场论时提出的这种想法跟着被边缘化是很正常的事情。物理学家们每天都要产生各种各样的想法,这些想法哪些可靠,哪些值得考虑,哪些值得自己深入研究,哪些东西值得自己不顾一切的去守护,这原本就是一个极困难的问题,也是非常考验物理学家水平的事情。
在当时更多物理学家的眼里,外尔这样的手法可能确实很漂亮,但有点“绣花枕头”的嫌疑:麦克斯韦方程组我们早就知道了,狄拉克、费曼等人也已经成功的把电磁场量子化了(就是所谓的量子电动力学),你在电磁领域这样颠来倒去好像确实很漂亮,但是没有增加任何知识啊?好吧,就算你的这个东西可能更普适,可能在强力、弱力里也有用武之地,但是在当时主流的描述强力和弱力的理论(也就是汤川秀树的介子理论和费米的四费米子理论)里,也看不到合适的用武的地方。而且,一般物理学家对“对称决定相互作用”的认识还远远没有达到爱因斯坦和杨振宁的水平,所以他们不怎么关注这个也是自然的。
所以,当时除了杨振宁、泡利、外尔等寥寥几人关注这个以外,其他人对此根本就不关心。而在这些关注的人里,杨振宁又无疑是其中对此关注度最高的一个,毕竟本科论文就是做的这个,后来给他带来诺贝尔奖的宇称不守恒也是关于对称性的,他一直对对称性在物理学里的作用保持极高的关注度。
既然想推广外尔的思想,试图通过找到某种新的局域规范对称性来找到强力、弱力的理论,那么关键就是要找到这种对称性。但是怎么找这种对称性呢?当然还是按照诺特定理,去看看强力、弱力里有什么守恒定律呗,最好还是像电荷守恒那样,在那种相互作用力特有的。
07同位旋
下篇待续……
因为这篇文章实在是太长了,头条号发文有长度限制,字数超了就不让发了。所以剩下的内容不得不放在下篇,大家可以去我的主页看文章的下篇~