选择题攻略38:翻折变换(折叠问题)

如图,在RtABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是    .
参考答案:
考点分析:
翻折变换(折叠问题).
题干分析:
如图,延长FPABM,当FPAB时,点PAB的距离最小,利用△AFM∽△ABC,得到AF/AB=FM/BC求出FM即可解决问题.
在解决数学问题过程中,特别是一些几何综合题,常常需要运用几何变换法,这样可以把一些复杂性问题转化为简单性的问题,从而使问题得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的数学问题,只要借助几何变换法,就可以化繁为简、化难为易。
因此,在数学学习过程,将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识,这样可以将几何变换的思想渗透到解决数学问题中。
(0)

相关推荐