pandas获取excel的行数,列数,表头,sheet,前后行等数据
了解了Series和dataframe的基本数据结构和索引的相关概念之后,就可以练习基本的excel操作。pandas读取一个excel文件后会将其转化为DataFrame对象,每一列或行就是一个Series对象,本节课我们看下如何整体的了解一个excel,比如查看一个excel的行数、列数、表头、前几行、后几行。下面用代码依次展示。
1)获取行数:df.index
pandas会默认给一个excel文件的行设置数字索引,从0开始算;如果一个excel多个列的行数不同则按照行数最多的那一列计算。
- # -*- coding: utf-8 -*-
- import pandas as pd
- df = pd.read_excel('kwd.xlsx')
- print(df.index) # 行索引
RangeIndex(start=0, stop=3747, step=1)
2)同时获取行数和列数:df.shape
输出元祖,分别为行数和列数,默认第一行是表头不算行数。
- # -*- coding: utf-8 -*-
- import pandas as pd
- df = pd.read_excel('kwd.xlsx')
- print(df.shape)
(3747, 4)
3)获取表头:df.columns、df.keys()
默认是把excel的第一行当成表头来显示。注意:如果read_excel的sheet_name参数设为None,则df.keys()的结果是所有sheet名对象。
- # -*- coding: utf-8 -*-
- import pandas as pd
- df = pd.read_excel('kwd.xlsx')
- print(df.keys())
- print('---------------')
- print(df.columns)
Index([9, '上海', '地铁站', '富锦路租房'], dtype='object') --------------- Index([9, '上海', '地铁站', '富锦路租房'], dtype='object')
4)获取所有sheet:df.keys()
- # -*- coding: utf-8 -*-
- import pandas as pd
- # 参数为None 代表读取所有sheet
- df = pd.read_excel('kwd_city.xlsx',sheet_name=None)
- # 获取所有sheet名字
- # 如果read_excel参数不是None,则df.keys()为表头
- sheet_names = list(df.keys())
- print(sheet_names)
['北京', '杭州', '天津', '上海', '南京', '苏州', '成都', '太原', '南宁', '郑州', '无锡', '武汉', '青岛', '长沙', '南昌', '常州']
5)前几行后几行
df.head(n) 数据框的前n行,会显示索引
df.tail(n) 数据框的后n行,会显示索引
- # -*- coding: utf-8 -*-
- import pandas as pd
- df = pd.read_excel('kwd.xlsx')
- print(df.head(3))
- print('----------------')
- print(df.tail(3))
9 上海 地铁站 富锦路租房 0 10 上海 地铁站 友谊西路租房 1 11 上海 地铁站 宝安公路租房 2 12 上海 地铁站 共富新村租房 ---------------- 9 上海 地铁站 富锦路租房 3744 279 郑州 商圈 政通路租房 3745 280 郑州 商圈 淮北街租房 3746 281 郑州 商圈 淮河路租房
6)详细信息:df.info()
df.info()直接输出详细信息,返回值None。
- # -*- coding: utf-8 -*-
- import pandas as pd
- df = pd.read_excel('kwd.xlsx')
- df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 3747 entries, 0 to 3746 Data columns (total 4 columns): 9 3747 non-null int64 上海 3747 non-null object 地铁站 3747 non-null object 富锦路租房 3747 non-null object dtypes: int64(1), object(3) memory usage: 117.2+ KB
赞 (0)