双曲正弦余弦,ln2估值
一、函数定义
在讲双曲函数的定义之前,我们先看一看三角函数的定义。如图所示:

在实域内,三角函数的值是通过单位圆和角终边上三角函数线的长度定义的。当然这个「长度」是有正负的。
同理,双曲函数的值也是通过双曲线和角终边上的双曲函数线的长度定义的。如图:

具体的定义为

,

,






利用双曲正弦余弦函数对g(x)变形,熟悉函数恒等式可减少运算难度。注意到g(0)=0,可首选考虑“端点效应”,后面的过程就不难理解了。


下面从泰勒级数出发估计

的值
我们都知道泰勒级数

考虑到上述级数是一个交错级数(这也是它收敛太慢的原因),我们可以通过加减消去其中的负项


令

得

,代入到上式中去有

此时取

项即可满足条件,对应误差为


这样的精度已经足够了,
所以取

计算得

参考文献
[1]王希,可能是最好的讲解双曲函数的文章,知乎
[2]南部,如何估计 ln2 的近似值?知乎
赞 (0)