牛人总结的EMC知识大全(从基础设计到整改方法)

电子万花筒平台核心服务

电子元器件:价格比您现有供应商最少降低10%

射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!

传导与辐射

电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。电磁兼容性EMC 标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。

EMC标准及测试

国际标准

1、国际电工委员为IEC

2、国际标准华组织ISO

3、电气电子工程师学会IEEE

4、欧盟电信标准委员会ETSI

5、国际无线电通信咨询委员CCIR

6、国际通讯联盟ITU

6、国际电工委员会IEC有以下分会进行EMC标准研究

-CISPR:国际无线电干扰特别委员会

-TC77:电气设备(包括电网)内电磁兼容技术委员会

-TC65:工业过程测量和控制

国际标准化组织

1、FCC联邦通

2、VDE德国电气工程师协会

3、VCCI日本民间干扰

4、BS英国标准

5、ABSI美国国家标准

6、GOSTR俄罗斯政府标准

7、GB、GB/T中国国家标准

EMI测试

1、辐射骚扰电磁场(RE)

2、骚扰功率(DP)

3、传导骚扰(CE)

4、谐波电路(Harmonic)

5、电压波动及闪烁(Flicker)

6、瞬态骚扰电源(TDV)

EMS测试

1、辐射敏感度试验(RS)

2、工频次次辐射敏感度试验(PMS)

3、静电放电抗扰度(ESD)

4、射频场感应的传导骚扰抗扰度测试(CS)

5、电压暂降,短时中断和电压变化抗扰度测试(DIP)

6、浪涌(冲击)抗扰度测试(SURGE)

7、电快速瞬变脉冲群抗扰度测试(EFT/B)

8、电力线感应/接触(Power induction/contact)

EMC测试结果的评价

A级:实验中技术性能指标正常

B级:试验中性能暂时降低,功能不丧失,实验后能自行恢复

C级:功能允许丧失,但能自恢复,或操作者干预后能恢复

R级:除保护元件外,不允许出现因设备(元件)或软件损坏数据丢失而造成不能恢复的功能丧失或性能降低。

5、电压暂降,短时中断和电压变化抗扰度测试(DIP)

6、浪涌(冲击)抗扰度测试(SURGE)

7、电快速瞬变脉冲群抗扰度测试(EFT/B)

8、电力线感应/接触(Power induction/contact)

EMC基础理论

EMC基础理论

-电磁干扰的时域与频域描述 :时域特性

-电磁干扰的时域与频域描述 :频域特性

-电磁干扰的时域与频域描述 :周期梯形波的

-电磁干扰的时域与频域描述:宽带噪声

-电磁干扰的时域与频域描述:时钟与数据噪声

-分贝(dB)的概念

分贝是电磁兼容中常用的基本单位。

定义为两个功率的比:

传导干扰耦合形式

1、共阻抗耦合

-由两个回路经公共阻抗耦合而产生,干扰量是电流i,或变化的电流di/dt。

2、容性耦合

-在干扰源与干扰对称之间存在着耦合的分布电容而产生,干扰量是变化的电场,即变化的电压du/dt。

3、感性耦合

-在干扰源与干扰对称之间存在着互感而产生,干扰量是变化的磁场,即变化的电流di/dt。

-电场与磁场

电场:导体之间的电压产生电场

-电场强度单位:V/m

磁场:导体上的电流产生磁场

-磁场强度单位:A/m

波阻抗:Zo=E/H

差模辐射与共模辐射

1、差模辐射:电流在信号环路中流动产生

2、共模辐射:由于导体的电位高于参考电位产生

3、PCB主要产生差模辐射

4、线缆主要产生共模辐射

5、差模辐射电场的计算

其中 :

E:电场强度(V/m)

f :电流的频率(MHz)

A:电流的环路面积(cm2)

I :电流的强度(mA)

r :测试点到电流环路的距离(m)

6、共模辐射电场的计算

其中 :

E:电场强度(V/m)

f :电流的频率(MHz)

L:电缆的长度(m)

I :电流的强度(mA)

r :测试点到电流环路的距离(m)

7、屏蔽的基本理论和设计要点

7.1屏蔽效能计算公式:

SE(dB)= R(dB)+A(dB)+B(dB)

R(dB)-reflection loss

A(dB)-absorption

B(dB)-re-reflection loss

7.2屏蔽设计的基本原则:

a、屏蔽体结构简洁,尽可能减少不必要的孔洞,尽可能不要增加额外的缝隙;

b、避免开细长孔,通风孔尽量采用圆孔并阵列排放。屏蔽和散热有矛盾时尽可能开小孔,多开孔,避免开大孔;

c、足够重视电缆的处理措施,电缆的处理往往比屏蔽本身还重要;

d、屏蔽体的电连续性是影响结构件屏蔽效能最主要的因素,相对而言,一般材料本身屏蔽性能以及材料厚度的影响是微不足道的(低频磁场例外);

e、注意控制成本;

EMC设计

EMC屏蔽设计

1、通风孔及开口设计

2、结构搭接缝屏蔽设计

3、电缆从屏蔽体内穿出

如果导体从屏蔽体中穿出去,将对屏蔽体的屏蔽效能产生显著的劣化作用。这种穿透比较典型的是电缆从屏蔽体中穿出。

4、穿出屏蔽体电缆的设计原则:

a、采用屏蔽电缆时,屏蔽电缆在出屏蔽体时,采用夹线结构,保证电缆屏蔽层与屏蔽体之间可靠接地,提供足够低的接触阻抗。

b、采用屏蔽电缆时,用屏蔽连接器转接将信号接出屏蔽体,通过连接器保证电缆屏蔽层的可靠接地。

c、采用非屏蔽电缆时,采用滤波连接器转接,由于滤波器通高频的特性,保证电缆与屏蔽体之间有足够低的高频阻抗。

d、采用非屏蔽电缆时,电缆在屏蔽体的内侧(或者外侧)要足够短,使干扰信号不能有效地耦合出去,从而减小了电缆穿透的影响。

e、电源线通过电源滤波器出屏蔽体,由于滤波器通高频的特性,保证电源线与屏蔽体之间有足够低的高频阻抗。

f、采用光纤出线。由于光纤本身没有金属体,也就不存在电缆穿透的问题。

5、不良接地

6、屏蔽材料及应用(导电布、簧片、导电橡胶)

7、截止波导通风板

8、良好接地

EMC接到设计

1、接地的概念及目的

a、一是为了安全,称为保护接地。电子设备的金属外壳必须接大地,这样可以避免因事故导致金属外壳上出现过高对地电压而危及操作人员和设备的安全。

b、二是为电流返回其源提供低阻抗通道,即工作接地。

c、防雷接地,为雷击提供电流泄放。

2、接地提供信号回流

3、单点接地

适用于工作频率1MHz以下系统

4、多点接地及混合接地

EMC滤波设计

1、滤波

a、滤波电路是由电感、电容、电阻、铁氧体磁珠和共模线圈构成的频率选择性网络,阻止某段频率范围内的信号沿线传递。

b、 滤波电路种类:反射、吸收。

2、滤波器件

a、电容(通用电容、三端电容)

b、电感(通用电感、共模电感、磁珠)

c、电阻

3、基本的滤波形式

4、差模滤波与共模滤波设计:

5、电容和三端电容特性

6、共模扼流圈

7、铁氧体磁珠

EMC PCB 设计

1、PCB设计

a、布局:同类电路布在一块、控制最小路径原则、高速电路间不要靠近小面板、电源模块靠近进单盘的位置

b、分层:高速布线层必须靠近一层地、电源与地相邻、元件面下布一层地、近可能将两个表层布地层、内层比表层缩进20H

c、布线:3W原则、差分对线等长,靠近走、高速或敏感线不能 跨分割区

d、接地:同类电路单独分布地,在单板上单点相连

e、滤波:电源模块、功能电路设计板级虑波电路

f、接口电路设计:接口电路设计滤波电路、实现内外有效隔离

2、布局的基本原则:

a、参照原理功能框图,基于信号流向,按照功能模块划分

b、数字电路与模拟电路、高速电路与低速电路、干扰源与敏感电路分开布局

c、单板焊接面避免放置敏感器件或强辐射器件

d、敏感信号、强辐射信号回路面积最小

e、晶体、晶振、继电器、开关电源等强辐射器件或敏感器件远离单板拉手条、对外接口连接器、敏感器件放置,推荐距离≥1000mil

f、敏感器件:远离强辐射器件,推荐距离≥1000mil

g、隔离器件、A/D器件:输入、输出互相分开,无耦合通路(如相邻的参考平面),最好跨接于对应的分割区

3、特殊器件布局

a、电源部分(置于电源入口处)

b、时钟部分(远离开口,靠近负载,布线内层)

c、电感线圈(远离EMI源)

d、总线驱动部分(布线内层,远离开口,靠近宿)

e、滤波器件(输入、输出分开,靠近源,引线短)

4、滤波电容的布局:BULK电容:

a、所有分支电源接口电路

b、功耗大的元器件附近

c、存在较大电流变化的区域,如电源模块的输入和输出端、风      扇、继电器等

d、PCB电源接口电路

5、、去藕电容的布局:

a、靠近电源管脚

b、位置、数量适当

6、接口电路的布局的基本原则:

接口信号的滤波、防护和隔离等器件靠近接口连接器放置,先防护,后滤波

接口变压器、光耦等隔离器件做到初次级完全隔离

变压器与连接器之间的信号网络无交叉

变压器对应的BOTTOM层区域尽可能没有其它器件放置

接口芯片(网口、E1/T1口、串口等)尽量靠近变压器或连接器放置

7、布线

走线短,不同类走线间距宽(信号及其回流线、差分线、屏蔽地线除外),过孔少,无环路,回路面积小,无线头

有延时要求的走线,其长度符合要求

无直角,对关键信号线优先采用圆弧倒角

相邻层信号走线互相垂直或相邻层的关键信号平行布线≤1000MIL

走线线宽无跳变或满足阻抗一致

各国产品安全和EMC认证组织

-欧美:CE

-美国:FCC&UL,NEBS

-日本:VCCI

-澳大利亚:CE

-中国:CCC

-台湾:CE

产品认证流程

-认证申请

-提交认证材料(认证标准、产品使用手册等)

-产品测试

-完成测试报告

-颁发认证证书

-产品发布

EMC工程师八个技能

1、EMC的基本测试项目以及测试过程掌握;

2、产品对应EMC的标准掌握;

3、产品的EMC整改定位思路掌握;

4、产品的各种认证流程掌握;

5、产品的硬件硬件知识,对电路(主控、接口)了解;

6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;

7、产品结构屏蔽设计技能掌握;

8、对EMC设计如何介入产品各个研发阶段流程掌握。

EMC整改六步走

电磁兼容性EMC(Electro Magnetic Compatibility)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。

各种运行的电子设备之间的干扰主要以电磁传导、电磁感应和电磁辐射三种方式彼此关联并相互影响,在一定的条件下会对运行的设备和人员造成干扰、影响和危害。关于具体EMC领域的整改文章其实不少。

EMC 整改六步法如下:第一步查找确认辐射源,第二步滤波,第三步吸波,第四步接地,第五步屏蔽,第六步能量分散法。具体思路如下图所示:

第一步:查找确认辐射源的方法有排除法、频谱分析仪频点搜索法、元件固有频率分析法。而排除法包含有拔线法、分区工作排除法、低电压小电流的人体触摸法,区域屏蔽排除法。元件固有频率分析法是指对一些元件的固定频率及其倍频频率分析归类法,如晶振和 DDR 等元件的工作频率都是固定的。

第二步:滤波一般分为电容滤波、RC 滤波和 LC 滤波等;

第三步:吸收电磁波方法有电路串联磁珠法、绕穿磁环法和贴吸波材料法。使用吸收电磁波方法时要特别注意:辐射超标电磁波频率必须在所使用的吸波材料所吸收电磁波频率范围之内,否则造成吸波法会失效。

第四步:接地法一般分为单点接地法和多点接地法。

第五步:屏蔽法一般有加屏蔽罩屏蔽法、外壳屏蔽法和PCB 走线布局屏蔽法。

第六步:能量分散法是指一些被测物的控制软件可利用展频和跳频等技术对能量集中的频段进行展宽频率带宽和跳变频率实现分散频段能量,从而使附加在单点频率上的能量降低,也就是起到了单点频率辐射的电磁波强度降低的功效。故此法对尖峰毛刺形波形的频率辐射超标会起到显著效果,对包络形波形频率辐射超标起不到明显作用。

这个EMC整改六步法比较适用于常见电子设备的整改。但上面的6种方法,其实天纵君认为它们虽有助于提高 EMC 辐射整改效率,节省周期,快速通过EMC测试,但其并不是根本性解决EMC问题的方案,EMC的问题最理想还是在设计端就进行考虑,而不是事后用一些“围追堵截”的方案来应急。

EMC(Electromagnetic Compatibility)即我们常说的电磁兼容技术。它包含了EMI和EMS两个部分的要求,即在电气装置或系统共同的电磁环境条件下,既不受电磁环境的影响,也不会给环境以干扰。

EMC整改方法

首先,要根据实际情况对产品进行诊断,分析其干扰源所在及其相互干扰的途径和方式。再根据分析结果,有针对性的进行整改。

一般来说主要的整改方法有如下几种

1、减弱干扰源在找到干扰源的基础上,可对干扰源进行允许范围内的减弱,减弱源的方法一般有如下方法:

a、在IC的Vcc和GND之间加去耦电容,该电容的容量在0.01μF到0.1μF之间,安装时注意电容器的引线,使它越短越好。

b、在保证灵敏度和信噪比的情况下加衰减器。如VCD、DVD视盘机中的晶振,它对电磁兼容性影响较为严重,减少其幅度就是可行的方法之一,但其不是唯一的解决方法。

c、还有一个间接的方法就是使信号线远离干扰源。

2、电线电缆的分类整理在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因,因为频率的因素,可大体分为高频耦合与低频耦合。因耦合方式不同,其整改方法也是不同的,下边分别讨论:

(1)低频耦合是指导线长度等于或小于1/16波长的情况,低频耦合又可分为电场和磁场耦合。

电场耦合的物理模型是电容耦合,因此整改的主要目的是减小分布耦合电容或减小耦合量,可采用如下的方法:

a、增大电路间距是减小分布电容的最有效的方法。

b、追加高导电性屏蔽罩,并使屏蔽罩单点接地能有效的抑制低频电场干扰。

c、追加滤波器可减小两电路间的耦合量。

d、降低输入阻抗,例如CMOS电路的输入阻抗很高,对电场干扰极其敏感,可在允许范围内在输入端并接一个电容或阻值较低的电阻。

磁场耦合的物理模型是电感耦合,其耦合主要是通过线间的分布互感来耦合的,因此整改的主要方法是破坏或减小其耦合量,大体可采用如下的方法:

a 追加滤波器,在追加滤波器时要注意滤波器的输入输出阻抗及其频率响应。

b 减小敏感回路与源回路的环路面积,即尽量使信号线或载流线与其回线靠近或扭绞在一体。

c 增大两电路间距,以便减小线间互感来减低耦合量。

d 若有可能,尽量使敏感回路与源回路平面正交或接近正交来降低两电路的耦合量。

e 用高导磁材料来包扎敏感线,可有效的解决磁场干扰问题,值得注意的是要构成闭和磁路,努力减小磁路的磁阻将会更加有效。

(2)高频耦合是指长于1/4波长的走线由于电路中出现电压和电流的驻波,会使耦合量增强,可采用如下的方法加以解决:

a、尽量缩短接地线,与外壳接地尽量采用面接触的方式。

b、重新整理滤波器的输入输出线,防止输入输出线间耦合,确保滤波器的滤波效果不变差。

c、屏蔽电缆屏蔽层采用多点接地。

d、将连接器的悬空插针接到地电位,防止其天线效应。

3、改善地线系统

理想的地线是一个零阻抗,零电位的物理实体,它不仅是信号的参考点,而且电流流过时不会产生电压降。在具体的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。据此可根据地线中干扰形成机理可归结为以下两点,第一,减小低阻抗和电源馈线阻抗。第二,正确选择接地方式和阻隔地环路,按接地方式来分有悬浮地、单点接地、多点接地、混合接地。如果敏感线的干扰主要来自外部空间或系统外壳,此时可采用悬浮地的方式加以解决,但是悬浮地设备容易产生静电积累,当电荷达到一定程度后,会产生静电放电,所以悬浮地不宜用于一般的电子设备。单点接地适用于低频电路,为防止工频电流及其他杂散电流在信号地线上各点之间产生地电位差,信号地线与电源及安全地线隔离,在电源线接大地处单点连接。单点接地主要适用于频率低于3MHz的情况。多点接地是高频信号唯一实用的接地方式,在射频时会呈现传输线特性,为使多点接地的有效性,当接地导体长度超过最高频率1/8波长时,多点接地需要一个等电位接地平面。多点接地适用于300KHz以上。混合接地适用于既然有高频又有低频的电子线路中

4、屏蔽

屏蔽是提高电子系统和电子设备电磁兼容性能的重要措施之一,它能有效的抑制通过空间传播的各种电磁干扰。屏蔽按机理可分为磁场屏蔽与电场屏蔽及电磁屏蔽。电场屏蔽应注意以下几点:

A、选择高导电性能的材料,并且要有良好的接地。

B、正确选择接地点及合理的形状,最好是屏蔽体直接接地。磁场屏蔽通常只是指对直流或甚低频磁场的屏蔽,其屏蔽效能远不如电场屏蔽和电磁屏蔽,磁屏蔽往往是工程的重点,磁屏蔽时:

a、要选用铁磁性材料。

b、磁屏蔽体要远离有磁性的元件,防止磁短路。

c、可采用双层屏蔽甚至三层屏蔽。

d、屏蔽体上边的开孔要注意开孔的方向,尽可能使缝的长边平行于磁通流向,使磁路长度增加最少。一般来说,磁屏蔽不需要接地,但为防止电场感应,还是接地为好。电磁场在通过金属或对电磁场有衰减作用的阻挡体时,会受到一定程度的衰减,即产生对电磁场的屏蔽作用。在实际的整改过程中视具体需要而定选择何种屏蔽及屏蔽体的形状、大小、接地方式等。

5、改变电路板的布线结构

有些频率点是通过电路板上走线分布参数所决定的,通过前述方法不大有用,此类整改通过在走线中增加小的电感、电容、磁珠来改变电路参数结构,使其移到限值要求较高的频率点上。对于这类干扰,要想从根本上解决其影响,就要重新布线。

小结:总之前面几种方法对提高电磁兼容性都有好处,但应用最为广泛的是改变地线结构及电线电缆的分类整理的方法,这些方法不仅节约成本,而且是最有效的整改方法。屏蔽虽然会增加成本,但是其所起到的屏蔽效能有时是其它方法无法媲美的。所以,在实际的整改中应以改变地线结构、电线电缆的分类整理、屏蔽的方法为主,以其它方法为辅。

EMC领域的三个重要规律和EMC问题三个要素

一、EMC三个重要规律 

规律一、EMC费效比关系规律:EMC问题越早考虑、越早解决,费用越小、效果越好。

在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。 经验告诉我们,在功能设计的同时进行EMC设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。相反,产品研发阶段不考虑EMC,投产以后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改进措施,导致产品不能上市。

工程师在整改测试中

天纵检测在实际检测工作中经常碰到的情况是:通过“围追堵截”的方法通过相关EMC测试和认证的强制要求,但这样的产品在实际生产的可生产性和产品实际适用性接近于零。这就造成实验室样品和实际成品是不一致的,EMC的整改成了“掩耳盗铃”的摆设了,因此真正要考量EMC问题是要在产品设计时就要考虑进去的,而不应该把主要对策放在产品测试阶段。

规律二、高频电流环路面积S越大, EMI辐射越严重。高频信号电流流经电感最小路径。当频率较高时, 一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路中的“天线形式”。对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的“天线”,如不连续的布线或有天线效应之元器件过长的插脚。减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。 在天纵检测实践中一些具体方法就是处理好接地问题(电源地与信号地)。

规律三、环路电流频率f越高,引起的EMI辐射越严重,电磁辐射场强随电流频率f的平方成正比增大。减少辐射骚扰或提高射频辐射抗干扰能力的最重要途径之二,就是想方设法减小骚扰源高频电流频率f,即减小骚扰电磁波的频率f。 关于这个f规律,天纵经验上看很多是因为屏蔽和外壳设计或做工造成的,因为频率越高,波长越小,越是容易从外壳或屏蔽体的小缝隙中泄露出来。

二、EMC问题三要素 

开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会产生很强的辐射。电磁干扰包括辐射型(高频) EMI、传导型(低频)EMI,即产生EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合途径、敏感设备。辐射干扰主要通过壳体和连接线以电磁波形式干扰空间电磁环境;传导干扰是通过电源线骚扰公共电网或通过其他端子(如:射频端子,输入端子)影响相连接的设备。

T、AV设备可能的骚扰源:

A) FM接收机、TV接收机本机振荡,基波及谐波由高频头、本机振荡电路产生; 
B) 开关电源的开关脉冲及高次谐波,同步信号方波及高频谐波,行扫描显像电路产生的行、场信号及高频谐波; 
C) 数字电路工作需要的各种时钟信号及高频谐波、以及它们的组合,各种时钟如CPU芯片工作时钟、解码器工作时钟、视频同步时钟等; 
D) 数字信号方波及高频谐波,晶振产生的高次谐波,非线性电路现象(非线性失真、互调、饱和失真、截止失真)等引起的无用信号、杂散信号; 
E) 非正弦波波形,波形毛剌、过冲、振铃,电路设计存在的寄生频率点。 
F) 对于敏感受体通过耦合途径接受的外部骚扰包括浪涌、快速脉冲群、静电、电压跌落、电压变化和各种电磁场。

电磁骚扰的特性 :

① 单位脉冲的频谱最宽; 
② 频谱中低频含量取决于脉冲的面积,高频分量取决于脉冲前后沿的陡度; 
③ 晶体振荡电平必须满足一定幅度, 数字电路才能按一定的时序工作,使晶振产生的骚扰呈现覆盖带宽、骚扰电平高的特点; 
④ 收发天线极化、方向特性相同时,EMI辐射和接受最严重;收发天线面积越大, EMI危害逾大; 
⑤ 骚扰途径:辐射,传导,耦合和辐射、传导、耦合的组合。 
⑥ 电源线传导骚扰主要由共模电流产生; 
⑦ 辐射骚扰主要由差模电流形成的环路产生。

真传一句话,假传万卷书。我们清楚了EMC中的三个规律和三个要素,会使得EMC问题变得简单和有规可循。了解了EMC的规律和传播要素,其实解决EMC问题的方法和思路也就清晰明了了,我们只要中断其中的一个因素,EMC问题必然都能得到很大的改良。

交易担保 FPGA芯城 全球最低价买芯片就上FPGA芯城 小程序

电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!

(0)

相关推荐