除了GLP-1能够通过PKA和Epac2信号刺激胰岛素分泌,GLP-1受体激动剂还通过促进胰岛素合成而增加葡萄糖代谢(图2)。Daniel Drucker首次在大鼠胰岛素瘤RIN1046-38细胞中报道了cAMP依赖的GLP-1刺激胰岛素基因表达[24,43],并伴随着GLUT1和己糖激酶1的表达而升高[44]。GLP-1诱导的胰岛素合成刺激是由Pdx1启动的,Pdx1是一种转录因子,参与胰腺的发育[28]和MODY4型糖尿病[45,46]。GLP-1诱导的PKA激活增加了Pdx1的表达和Pdx1向细胞核的转移。Pdx1与胰岛素启动子结合,启动胰岛素的表达和合成(图2)[28,47]。在RIN1046-38细胞中PKA激活Pdx1,可以通过PKA抑制或cAMP拮抗剂阻断,而不是葡萄糖诱导的Pdx1核转位,这也证实了GLP-1以cAMP依赖的方式调控PKA/Pdx1轴[28],促进了胰岛素的合成。所以,GLP-1通过多种cAMP依赖途径刺激胰岛素的合成和分泌。专家寄语母义明教授 中国人民解放军总医院利拉鲁肽国内上市已10年,目前在国内获批的适应症为:适用于成人2型糖尿病患者控制血糖;适用于单用二甲双胍或磺脲类药物最大可耐受剂量治疗后血糖仍控制不佳的患者,与二甲双胍或磺脲类药物联合应用。适用于降低伴有心血管疾病的2型糖尿病成人患者的主要心血管不良事件(心血管死亡、非致死性心肌梗死或非致死性卒中)风险。今年又值司美格鲁肽(GLP-1受体激动剂周制剂)上市年,和利拉鲁肽适应症相似,其同样具有对2型糖尿病患者的降糖和降低心血管事件不良风险适应症。这10年当中,人类医学在进步,人们对糖尿病的管理、对GLP-1的了解都在前进,本期“名家说'肽’”就GLP-1与胰岛素的渊源、GLP-1片段在肠道的来龙去脉以及其对胰岛素分泌和合成的路径做了梳理,希望对大家的临床工作、科研工作有所裨益。后续还将有更多名家与读者分享更多关于GLP-1的故事,我们也期待未来GLP-1仍然有更大空间值得我们去探索。参考文献:[1] Collip JB,1923. Delayed manifestation of the physiological effects of insulin following the administration of certain pancreatic extracts. Amer J Physiol 63:391.[2] Fisher NF,1923. Preparation of insulin. Amer J Physiol 67:57.[3] Rigopoulou D,Valverde I, Marco J, Faloona G, Unger RH, 1970. Large glucagon immunoreactivity in extracts of pancreas. J Biol Chem 245:496-501.[4] Kimball C, Murlin J,1923. Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J Biol Chem 58:337–348.[5] Hellerstrom C, Hellman B, Petersson B, Alm G. The two types of pancreatic alpha cells and their relation to glucagon secretion. Ed Brolin SE, Hellman B and Knutson H - Instructure and Metabolism of the Pancreatic Islets Pergamon Press Ltd, Edinburgh & New York:117-129.[6] Hellman B, Lernmark A,1969. Inhibition of the in vitro secretion of insulin by an extract of pancreatic alpha-1 cells. Endocrinology 84:1484-1488.[7] Unger RH, Eisentraut AM, Mc CM, Keller S, Lanz HC, Madison LL,1959. Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621-623.[8] Moody AJ, Markussen J, Fries AS, Steenstrup C, Sundby F,1970. The insulin releasing activites of extracts of pork intestine. Diabetologia 6:135-140.[9] Murphy RF, Elmore DT, Buchanan KD, 1971. Isolation of glucagon-like immunoreactivity of gut by affinity chromatography. Biochem J 125:61P-62P.[10] Unger RH, Eisentraut AM, Sims K, McCall MS, Madison LL,1961. Sites of origin of glucagon in dogs and humans. Clin Res 9:53.[11] Valverde I, Rigopoulou D, Marco J, Faloona GR, Unger RH,1970. Characterization of glucagon-like immunoreactivity (GLI). Diabetes 19:614-623.[12] Unger RH, Ketterer H, Eisentraut AM,1966. Distribution of immunoassayable glucagon in gastrointestinal tissues. Metabolism 15:865-867.[13] Unger RH, Ohneda A., Valverde I, Eisentraut AM, Exton J,1968. Characterization of the responses of circulating glucagon-like immunoreactivity to intraduodenal and intravenous administration of glucose. J Clin Invest 47:48-65.[14] Samols E, Marks V, 1967. [New conceptions on the functional significance of glucagon (pancreatic and extra-pancreatic)]. Journ Annu Diabetol Hotel Dieu 7:43-66.[15] Grimelius L, Capella C, Buffa R, Polak JM, Pearse AG, Solcia E, 1976. Cytochemical and ultrastructural differentiation of enteroglucagon and pancreatic-type glucagon cells of the gastrointestinal tract. Virchows Arch B Cell Pathol 20:217-228.[16] Buffa R, Capella C, Fontana P, Usellini L, Solcia E. 1978. Types of endocrine cells in the human colon and rectum. Cell Tissue Res 192:227-240.[17] Tung AK, Zerega F,1971. Biosynthesis of glucagon in isolated pigeon islets. Biochem Biophys Res Commun 45:387-395.[18] Hellerstrom C, Howell SL, Edwards JC, Andersson A,1972. An investigation of glucagon biosynthesis in isolated pancreatic islets of guinea pigs. FEBS Lett 27:97-101.[19] Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF,1986. Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem 261:11880-11889.[20] Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV,1986.Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467-1475.[21] Orskov C, Holst JJ, Poulsen SS, Kirkegaard P,1987. Pancreatic and intestinal processing of proglucagon in man. Diabetologia 30:874-881.[22] Patzelt C, Tager HS, Carroll RJ, Steiner DF,1979. Identification and processing of proglucagon in pancreatic islets. Nature 282:260-266.[23] Patzelt C, Schug G,1981. The major proglucagon fragment: an abundant islet protein and secretory product. FEBS Lett 129:127-130.[24] Drucker DJ, Philippe J, Mojsov S, Chick W L, Habener J F,1987. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434-3438.[25] Harndahl L, Jing XJ, Ivarsson R, Degerman E, Ahren B, Manganiello V C, et al,2002. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem 277:37446-37455.[26] Bunemann M, Gerhardstein BL, Gao T, Hosey MM, 1999. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem 274:33851-33854.[27] MacDonald PE, Wang X, Xia F, El-kholy W, Targonsky ED, Tsushima RG, et al,2003. Antagonism of rat beta-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 278:52446-52453.[28] Wang X, Zhou J, Doyle ME, Egan JM,2001. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology 142:1820-1827.[29] Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H,et al,2001. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046-46053.[30] Holz GG, 2004. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53:5-13.[31] de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al,1998. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474-477.[32] Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M,et al, 1998. A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275-2279.[33] Doyle ME, Egan J M,2007. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546-593.[34] Cheng X, Ji Z, Tsalkova T, Mei F,2008. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 40:651-662.[35] Leech CA, Holz GG, Chepurny O, Habener J F,2000. Expression of cAMP-regulated guanine nucleotide exchange factors in pancreatic beta-cells. Biochem Biophys Res Commun 278:44-47.[36] Holz GG, Leech CA, Heller RS, Castonguay M, Habener J F,1999. cAMPdependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 274:14147-14156.[37] Kang G, Chepurny OG, Holz GG,2001. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic betacells. J Physiol 536:375-385.[38] Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, Rutter GA,2003. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J 369:287-299.[39] Weir GC, Mojsov S, Hendrick GK, Habener JF,1989. Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes 38:338-342.[40] Gromada J, Brock B, Schmitz O, Rorsman P,2004. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 95:252-262.[41] Renstrom E, Eliasson L, Rorsman P,1997. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502 (Pt 1):105-118.[42] Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P,1998. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47:57-65.[43] Fehmann HC, Habener JF,1992. Galanin inhibits proinsulin gene expression stimulated by the insulinotropic hormone glucagon-like peptide-I(7-37) in mouse insulinoma beta TC-1 cells. Endocrinology 130:2890-2896.[44] Wang Y, Egan JM, Raygada M, Nadiv O, Roth J, Montrose-Rafizadeh C,1995. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cells. Endocrinology 136:4910-4917.[45] Hani EH, Stoffers DA, Chevre JC, Durand E, Stanojevic V, Dina C,et al,1999. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 104:R41-48.[46] Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP,et al. 1999. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 104:R33-39.[47] Wang X, Cahill CM, Pineyro MA, Zhou J, Doyle ME, Egan JM,1999. Glucagonlike peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells. Endocrinology 140:4904-4907.-End-“此文仅用于向医疗卫生专业人士提供科学信息,不代表平台立场”投稿/转载/商务合作,请联系:pengsanmei@yxj.org.cn