数学思想-符号化思想

数学符号是人们在研究现实世界的数量关系和空间形式的过程中产生的,它来源于生活,但并不是生活中真实的物质存在,而是一种抽象概括。一个数学符号一旦产生并被广泛应用,它就具有明确的含义,就能够进行精确的数学运算和推理证明,因而它具有精确性。

我们知道,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用,符号---使得数学具有简明、抽象、清晰、准确等特点。特别是国际通用的数学符号的使用,使数学成为国际化的语言。

对于小学教师来说如何理解符号化思想呢?

首先教师应该从具体情境中抽象出数量关系和变化规律,并用符号表示。这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。如通过几组具体的两个数相加,交换加数的位置和不变,归纳出加法交换律,并用符号表示:a+b=b+a。

其次教师要理解符号所代表的数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图象等表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。

第三教师要理解进行符号间的转换。数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。

最后教师还要能选择适当的程序和方法解决用符号所表示的问题。这是指完成符号化后的下一步工作,就是进行数学的运算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。新修订的数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在理解符号化思想的同时在日常教学中要给予足够的重视,并落实到课堂教学目标中。要创设合适的情境,引导学生在探索中归纳和理解数学模型,并进行解释和应用。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。数学符号意识的培养也应贯穿于数学学习的整个过程中,并需要一定的训练才能达到比较熟练的程度。

(0)

相关推荐