《測圓海鏡》勾股形“天月坤”﹝10﹞之五和五較說

測圓海鏡勾股形天月坤10五和五較

上傳書齋名:瀟湘館112  Xiāo XiāngGuǎn 112

何世強 Ho Sai Keung

提要:《測圓海鏡》乃金‧李冶所撰,其書之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。此等勾股形三邊形成一系列之恆等式,本文主要談及第10勾股形天月坤相關之五和五較等式。

關鍵詞:大差弦、大差股、大差勾、天月坤

《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,乃研究勾股形最深入之古代數學典籍。

本文所引用之勾股式源自“圓城圖式”之十五勾股形,其中 a1b1c1 乃最大勾股形天地乾之勾、股及弦長。故 a1b1c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。

《測圓海鏡》之〈五和五較〉篇涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i ≦ 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精髓。

以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。

本文談及之勾股形乃天月坤﹝又稱為“大差”﹞,亦即以下兩圖帶綠色之二勾股形,天月坤之斜邊“天月”是為大差弦,其直角為 10,以 10 之位置為 “坤”,其勾股分別為  a10 ﹝天坤﹞與 b10 ﹝月坤﹞。

以下為天月坤勾股形之三事﹝三事,三邊之長也﹞:

大差勾 = a10=

=

(c1a1) 。

大差股 = b10= b1 – (a1 + b1c1) = b1a1b1 + c1 = c1a1

注意圓徑為 a1 + b1c1,見上圖之東南西北圓。

大差弦 = c10=

(c1a1) 。

天月坤勾股形之三事與大弦與大勾之差有關,三事之和較亦可以以 a1b1c1 表之。

若勾股形之弦 = c,勾 = a,股 = b,則以下為五和五較:

(1)      勾股和:a + b

(2)      勾股較:ba

(3)      勾弦和:a + c

(4)      勾弦較:ca

(5)      股弦和:b + c

(6)      股弦較:cb

(7)      弦較和:c + (ba) ﹝較指勾股較,和指弦與勾股較之和﹞

(8)      弦較較:c – (ba) ﹝第一較字指勾股較,第二較字指弦與勾股較之較﹞

(9)      弦和和:(a + b) + c ﹝第一和字指勾股和,第二和字指弦與勾股和之和。又稱為三事和﹞

(10)      弦和較:(a + b) – c ﹝第一和字指勾股和,第二較字指弦與勾股和之較。又稱為三事較﹞

以下為與大差弦﹝勾股形天月坤 10﹞有關之“五和五較”等式:

大差上勾股和即大股內去虛勾。其差則大差弦內去圓徑也。弦勾共即大股。其差則大差股內去二之明勾也。股弦和為大股上加個大中差也按大中差乃明股弦和與半徑之較。其較則虛勾也。弦較和為兩個邊弦上勾弦較。其較即城徑也。三事和即大股與股圓差共。又為大弦大較共。又為二邊股。其較則太虛上弦較和也。

以下為各條目之証明:

大差上勾股和即大股內去虛勾。

大差上勾股和 = b10 + a10 = (c1a1) +

(c1a1)

= (c1a1)(1 +

)

=

(c1a1)(b1 + a1) 。

已知大股 = b1,虛勾即太虛勾 = a13=

(c1b1)(c1a1)。

大股內去虛勾= b1

(c1b1)(c1a1)

=

(b12c12 + c1a1 + b1c1b1a1)

=

(– a12 + c1a1 + b1c1b1a1)

=

[a1(c1a1) + b1(c1a1)]

=

(c1a1)(b1 + a1) 。

所以大差上勾股和 = 大股內去虛勾。

其差則大差弦內去圓徑也。

“其差”指大差上勾股較,勾股較即勾股差。

大差上勾股差 = b10a10 = (c1a1) –

(c1a1)

= (c1a1)(1 –

)

=

(c1a1)(b1a1) 。

已知大差弦 =c10 =

(c1a1),又已知圓徑 = b1 + a1c1

大差弦內去圓徑=

(c1a1) – (b1 + a1c1)

=

[c12c1a1b1(b1 + a1c1)]

=

[c12c1a1b12b1a1 + b1c1]

=

[ – c1a1 + a12b1a1 + b1c1]

=

[ – a1(c1a1) + b1(c1a1)]

=

(c1a1)(b1a1) 。

所以大差上勾股差 = 大差弦 –圓徑。

弦勾共即大股。

大差上弦勾共 = c10 + a10 =

(c1a1) +

(c1a1)

=

(c1a1)(c1 + a1)

=

(c12a12)

=

× b12

= b1﹝是為大股﹞。

所以大差上弦勾共 = 大股。

其差則大差股內去二之明勾也。

“其差”指大差上弦勾差。

大差上弦勾差= c10a10 =

(c1a1) –

(c1a1)

=

(c1a1)(c1a1)

=

(c1a1)2

大差股= b10 = c1a1。二之明勾 = 2 ×a14

= 2 ×

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)。

大差股內去二之明勾=(c1a1) –

(c1a1)(b1c1 + a1)

= (c1a1)[1 –

(b1c1 + a1)]

=

(c1a1)(b1b1 + c1a1)

=

(c1a1)2

所以大差上弦勾差 = 大差股內去二之明勾。

股弦和為大股上加個大中差也﹝按大中差乃明股弦和與半徑之較﹞。

大差上股弦和= c10 + b10 =

(c1a1) + (c1a1)

= (c1a1)(

+ 1)

=

(c1a1)(c1 + b1) 。

注意“大中差”之定義。

大中差 = b14 + c14

(b1c1 + a1)

=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

(b1c1 + a1)

=

(b1c1 + a1)[

(c1a1) +

(c1a1) – 1]

=

(b1c1 + a1)(b1c1b1a1 + c12c1a1b1a1)

=

(b1c1 + a1)[c1(b1a1) + (b1a1)2]

=

(b1c1 + a1)(b1a1)(c1 + b1a1)。

b1 是為大股,大股上加個大中差

= b1 +

(b1c1 + a1)(b1a1)(c1 + b1a1)

= b1 +

(b1a1)[b1 – (c1a1)](b1 + c1a1)

= b1 +

(b1a1)[b12 – (c1a1)2]

= b1 +

(b1a1)[b12c12a12 + 2c1a1]

= b1 +

(b1a1)[ – 2a12+ 2c1a1]

= b1 +

(b1a1)[c1a1]

=

(b12 + b1c1b1a1a1c1 + a12)

=

(c12 + b1c1b1a1a1c1)

=

[c1(c1 + b1)– a1(b1 + c1)]

=

(c1a1)(c1 + b1) 。

所以大差上股弦和 = 大股上加個大中差。

其較則虛勾也。

“其較”指大差上股弦較。

大差上股弦較 = c10b10 =

(c1a1) – (c1a1)

= (c1a1)(

– 1)

=

(c1a1)(c1b1) 。

虛勾即太虛勾 = a13=

(c1b1)(c1a1)。

所以大差上股弦較 = 虛勾。

弦較和為兩個邊弦上勾弦較。

大差上弦較和=c10 + (b10a10) = c10+ b10a10

=

(c1a1) + (c1a1) –

(c1a1)

= (c1a1)[

+ 1 –

]

=

(c1a1)(c1 + b1a1)

=

(c1a1)(c1a1 + b1) 。

已知邊弦 = c2 =

(c1 + b1a1) 。

邊勾 = a2 =

(c1 + b1a1) 。

兩個邊弦上勾弦較 = 2 × [

(c1 + b1a1) –

(c1 + b1a1)]

=

(c1 + b1a1) –

(c1 + b1a1)

= (c1 + b1a1)[

]

=

(c1a1)(c1a1 + b1) 。

所以大差上弦較和 = 兩個邊弦上勾弦較。

其較即城徑也。

“其較”指大差上弦較較。

大差上弦較較 = c10 – (b10a10)= c10b10 + a10

=

(c1a1) – (c1a1) +

(c1a1)

= (c1a1)[

– 1 +

]

=

(c1a1)(c1b1 + a1)

=

(c1a1)(c1 + a1b1)

=

(c12a12c1b1 + a1b1)

=

(b12c1b1 + a1b1)

= a1 + b1c1

上式即為城徑,亦即圓徑。所以大差上弦較較 = 城徑。

三事和即大股與股圓差共。

大差上三事和=c10 + b10 + a10

=

(c1a1) + (c1a1) +

(c1a1)

= (c1a1)[

+ 1 +

]

=

(c1a1)(c1 + b1 + a1)

=

(c1a1)(c1 + a1 + b1)

=

(c12a12 + c1b1a1b1)

=

(b12 + c1b1a1b1)

= b1 + c1a1

因為大股 = b1;圓即圓徑,故股圓差 = b1 – (a1 + b1c1) = c1a1

大股與股圓差= b1 + (c1a1) =b1 + c1a1

所以大差上三事和 = 大股與股圓差。

又為大弦大較共。

已知大弦 = c1;大較 = 大股 – 大勾=b1a1

大弦大較共= c1 + (b1a1) = b1 + c1a1

所以大差上三事和 = 大弦大較共。

又為二邊股。

已知邊股 = b2 = b1

(a1 + b1c1) =

(c1 + b1a1) 。

二邊股 =2 ×

(c1 + b1a1) = b1 + c1a1

所以大差上三事和 = 二邊股。

其較則太虛上弦較和也。

“其較”指大差上三事較。

大差上三事較即弦和較 = (b10 + a10) – c10 = b10 + a10c10

b10 + a10c10 =(c1a1) +

(c1a1) –

(c1a1)

= (c1a1)[ 1 +

]

=

(c1a1)(b1 + a1c1) 。

又因為太虛勾= a13 =

(c1b1)(c1a1)。

太虛股 = b13=

=

(c1b1)(c1a1)。

太虛弦 = c13=

(c1b1)(c1a1)。

太虛上弦較和=c13 + (b13a13) = c13+ b13a13

c13 + b13a13

=

(c1b1)(c1a1) +

(c1b1)(c1a1) –

(c1b1)(c1a1)

= (c1b1)(c1a1)[

+

]

=

(c1b1)(c1a1)(c1 + b1a1)

=

(c1a1)(c1b1)(c1 + b1a1)

=

(c1a1)(c12b12c1a1 + b1a1)

=

(c1a1)(a12c1a1 + b1a1)

=

(c1a1)(b1 + a1c1)。

所以大差上三事較 = 太虛上弦較和。

以下為《測圓海鏡細草》原文:

(0)

相关推荐