紫外-催化湿式过氧化氢氧化煤化工废水膜浓缩液
催化湿式过氧化氢氧化(CWPO)是在高温高压以及催化剂的作用下,以H2O2为氧化剂,将水中较为复杂的有机物氧化成CO2和H2O,或者氧化成可生化性好的简单有机物,是针对高浓度难降解有机废水的高级氧化技术。
CWPO具有降解效率高、应用范围广、无二次污染等优点,但有两个不足之处,其一是缺乏高效稳定的催化剂,其二是需在较高的反应温度和反应压力条件下进行。钙钛矿型催化剂是一种晶体结构为立方晶系的复合金属氧化物,具有结构可控、热稳定性好、催化效率高以及氧化还原能力强等优点,在催化领域具有广泛的应用前景。高雯雯等研究了LaCoO3钙钛矿型催化剂非均相Fenton处理兰炭废水,在最佳工艺条件下,兰炭废水的COD去除率达到72.7%。邹文静等研究了LaBO3(B=Cr、Mn、Fe、Co、Ni)钙钛矿型氧化物对表面活性剂十二烷基苯磺酸钠(SDS)光解效果,其中LaCoO3对SDS溶液有较好的的降解效果,降解率达到85.19%。
基于此,在催化湿式过氧化氢氧化的体系中加入紫外光,构成紫外-催化湿式过氧化氢氧化(UV-CWPO)工艺,采用自制的LaCoO3钙钛矿型催化剂,在较低的温度和压力下处理煤化工废水膜浓缩液,探究各个工艺参数对处理效果的影响,确定最佳的反应条件并验证其处理效果。
1
实验部分
废水:废水水样取自内蒙古某煤制天然气废水深度处理单元,其COD为1 510 mg/L,pH为7.86,TOC为658 mg/L,UV254为1.562,NH4+-N为3 170 mg/L,溶解性总固体含量为6 200 mg/L。
试剂:硝酸镧,上海凌峰化学试剂有限公司;硝酸钴,上海凌峰化学试剂有限公司;柠檬酸,国药试剂有限公司;浓硫酸,南京化学试剂有限公司;氢氧化钠,南京化学试剂有限公司;过氧化氢(30%),南京化学试剂有限公司;重铬酸钾,国药试剂有限公司;硫酸银,国药试剂有限公司;硫酸汞,上海试四赫维化工有限公司;硫酸亚铁铵,上海试四赫维化工有限公司;邻菲罗啉,南京化学试剂有限公司。
仪器:马弗炉,济南精锐分析仪器有限公司;KHCOD-8Z型COD消解仪,南京科环分析仪器有限公司;雷磁pHB-4型pH计,上海仪电科学仪器股份有限公司;TOC-L总有机碳分析仪,日本岛津公司;UV-2600紫外可见分光光度计,日本岛津公司;TFM-500型高压反应釜,北京世纪森郎实验仪器有限公司;500 W汞氙灯光源,北京中教金源科技有限公司;AUY-120型电子天平,日本岛津公司;S3400N Ⅱ扫描电子显微镜,日本日立;XD-6型转靶X射线衍射分析仪,北京普析通用仪器有限责任公司;TriStar 3020物理吸附仪,麦克默瑞提克(上海)仪器有限公司;Microtrac S3500激光粒度分析仪,美国麦奇克有限公司。
采用溶胶-凝胶法制备LaCoO3钙钛矿型催化剂。以柠檬酸作为络合剂,按化学计量比n(硝酸镧):n(硝酸钴)=1:1、n(金属离子):n(柠檬酸)=1:1.5分别称取一定量的硝酸镧、硝酸钴和柠檬酸,配制成浓度为0.1 mol/L的混合溶液,将溶液在70 ℃下恒温搅拌至稠状溶胶,然后在105 ℃烘箱中烘干至形成面包状凝胶,将形成的凝胶研细后置于马弗炉中,在900 ℃下煅烧5 h即得产品。
取250 mL水样用稀硫酸调pH至3,然后置于500 mL光化学高压反应釜中,向釜中加入一定量的过氧化氢和催化剂,并通入一定压力的空气。设定反应温度、反应时间,当达到设定的温度时打开光源。反应一定时间后取样分析。
2
结果与讨论
(1)XRD表征
采用XRD对LaCoO3钙钛矿型催化剂进行物相分析,图1是其XRD图。可以看出,采用溶胶-凝胶法制备的LaCoO3钙钛矿型催化剂在33.04°(a)、47.65°(b)和59.08°(c)处出现了明显的LaCoO3钙钛矿结构的特征衍射峰,并与LaCoO3的标准卡片PDF48-0123相吻合,表明所制催化剂为纯净的具有正交晶型的钙钛矿型催化剂。
图1 LaCoO3钙钛矿型催化剂XRD
(2)比表面积及孔结构分析
采用Micromeritics TriStar Ⅱ 3020型物理吸附仪对催化剂进行比表面积及孔结构分析。样品的比表面积由BET方程计算,孔体积及孔径由BJH模型直接脱附分支计算得出。可知LaCoO3催化剂的比表面积为4.713 6 m2/g,孔体积为0.006 297 cm3/g,孔径为4.357 9 nm。
(3)SEM表征
采用SEM观察了LaCoO3钙钛矿型催化剂的形貌特征,见图2。
图2 LaCoO3钙钛矿型催化剂SEM图
在催化剂投加量0.8 g/L,反应温度120 ℃,反应压强1 MPa,pH为3,反应时间60 min的条件下,探究H2O2投加量对氧化效果的影响,结果见图3。
图3 H2O2投加量对氧化效果的影响
由图3可知,随着H2O2投加量的增加,废水中COD、TOC、UV254的去除率都随之增大。当H2O2投加量达到1.2 mL/L时,COD和TOC的去除率达到最大分别为90.3%和86.6%,UV254的去除率也高达97.9%。当H2O2投加量超过1.2 mL/L时,UV254的去除率已无明显增加,而COD和TOC的去除率则呈下降趋势。这是因为H2O2作为反应体系中的氧化剂,随着投加量的增加,产生了更多的·OH,增强了反应体系的氧化能力;当H2O2浓度过高时,多余的H2O2会与反应体系中的·OH发生分解反应,抑制氧化性能的同时造成氧化剂的浪费。综合考虑,本实验H2O2最佳投加量选为1.2 mL/L。
在H2O2投加量1.2 mL/L,催化剂投加量0.8 g/L,反应压强1 MPa,pH为3,反应时间60 min的条件下,探究反应温度对氧化效果的影响,结果见图4。
图4 反应温度对氧化效果的影响
在H2O2投加量1.2 mL/L,催化剂投加量0.8 g/L,反应温度120 ℃,pH为3,反应时间60 min的条件下,探究反应压强对氧化效果的影响,结果见图5。
图5 反应压强对氧化效果的影响
由图5可知,随着反应压强的升高,废水COD、TOC、UV254的去除率基本保持不变。在反应压强为0.5 MPa(120 ℃时水的饱和蒸气压为0.2 MPa)时,COD、TOC、UV254的去除率就能够达到89.2%、84.5%、97.1%,增加的反应压强对氧化效果没有显著影响。这是因为在紫外-催化湿式过氧化氢氧化体系中,以过氧化氢作为氧化剂时仅进行H2O2与污染物之间的氧化过程,较催化湿式氧化体系少了氧气从气相到液相传质过程,从而减少了能量消耗。因此本体系仅需在低压条件下就能氧化降解污染物。综合考虑氧化效果及安全性,本实验选择最佳反应压强为0.5 MPa。
在H2O2投加量1.2 mL/L,反应温度120 ℃,反应压强为0.5 MPa,pH为3,反应时间60 min的条件下,探究催化剂投加量对氧化效果的影响,结果见图6。
图6 催化剂投加量对氧化效果的影响
由图6可知,随着催化剂投加量的增加,废水COD、TOC、UV254的去除率呈现先增大后下降的趋势,当催化剂投加量为0.8 g/L时,COD、TOC、UV254的去除率分别达到89.7%、84.6%、97.2%。原因是随着催化剂投加量的增加,催化剂表面的活性点位不断增多,催化过氧化氢产生·OH的速率不断加快,从而提高氧化速率;当催化剂投加量大于0.8 g/L时,废水的COD、TOC、UV254的去除率出现略微下降的趋势,原因是催化剂过多时,影响废水的透光性,进而影响紫外光的吸收,所以氧化效率出现略微下降。因此,本实验选择最佳催化剂的投加量为0.8 g/L。
3
结论
(1)采用溶胶-凝胶法制备的LaCoO3催化剂为纯净的具有正交晶型的钙钛矿型催化剂。催化剂颗粒间界面较清晰,颗粒表面存在孔洞且数量较多,增加了催化剂的活性点位,增大了催化剂与反应物的接触面积,有利于催化反应的进行。
(2)处理煤化工膜浓缩液的最佳工艺条件为:pH为3,H2O2投加量1.2 mL/L,催化剂投加量0.8 g/L,反应温度120 ℃,反应压强0.5 MPa,反应时间60 min。在最佳工艺条件下,COD的去除率为89.7%,TOC的去除率为84.6%,UV254的去除率为97.2%。