光电检测装置应用中的问题分析(1)
摘要:文中阐述了光电检测装置的基本工作原理,并对光电检测装置应用中的问题作以分析,论述了提高光电检测装置工作可靠性的具体措施。
关键词:工作原理 问题分析 改善措施
1.光电检测装置工作原理
光电检测装置的电路可分为主动式和被动式两类,主动式由发射和接收两部分电路组成;被动式电路无发射部分,仅由接收部分电路组成。主动式的工作过程是:当接收部分收到发射部分发射出的光信号时,电路不动作;当由于障碍物的遮挡使得接收部分收不到发射部分发射出的光信号时,电路动作。被动式的工作过程与主动式电路的工作过程相同,只是它依靠被探测物体本身发射出的光信号而动作。两者相比,由于被动式不需要发射电路,故电路结构简单,使用灵活方便,应用的领域更为广泛。
1.1光电编码器
光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1a所示。
通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。这是目前应用最多的传感器,光电编码器的工作原理如图所示,在圆盘上有规则地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。当圆盘旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,码盘上有相应的标志,每转一圈输出一个脉冲。此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号,如图1b所示。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1.1增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。
1.1.2绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是:
(1)可以直接读出角度坐标的绝对值;
(2)没有累积误差;
(3)电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。
1.1.3混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
光电编码器是一种角度(角速度)检测装置,它将输入轴的角度量,利用光电转换原理 转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。