浅析电气设备可靠性设计(1)
摘要:本文阐述了可靠性的定义,论述了系统可靠性的技术指标,分析了影响系统可靠性的主要因素,探讨了提高系统可靠性的途径。
关键词:可靠性 指标 因素 措施
一、可靠性定义
近年来,电气设备的发展趋势是模块化、系统化和智能化,电气设备的新产品开发的速度在加快;而其使用环境也变得恶劣多样;而所服务的系统又越来越重要和昂贵。以自动开关为例,已广泛地应用于车载、舰载、地面的军用装备,航空航天部门,铁路和交通的信号和通信系统等方面。因电源需要日夜不停地连续运行,这就要求电气开关要经受高、低温,高湿,冲击等考验。运行中往往不允许检修,或只能从事简单的维护。这一切就使得电气开关的可靠性研究,变得刻不容缓,十分重要了。其实,早在上世纪70年代,英国电气工程师学会发表的论文就指出:在提供军事通信的英国天网系统的设计研制中,中心课题首先是可靠性。
国际上,通用的可靠性定义为:在规定环境条件下,和规定的时间内,完成规定功能的能力。此定义适用于一个系统,也适用于一台设备或一个单元。由于故障出现的随机性质,用数学方式来描述可靠性,常用“概率”来表示。
从而,引出可靠度[R(t)]的定义:系统在规定环境条件下和规定时间内,完成规定功能的概率。例如:对N个产品进行试验,每经过Δt的时间间隔检查一次,每次出故障的产品数为ni,则在T时间内的可靠度R(t)为:
可近似为:
(1)
(2)
R(t)的数值范围为:0≤R(t)≤1。R(t)的值越接近于1,则表示可靠性越高。如系统有N个单元组成(串联方式),各单元的R(t)分别为R1(t),R2(t)……RN(t),则整个系统的RΣ(t)=R1(t)·R2(t)…RN(t)。可见,系统越复杂,可靠性越差。
2.系统可靠性的指标
涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺;忽略了系统设计对于可靠性的决定性的作用。在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面。(日本把元器件的选型,质量级别的确定,元器件的负荷率等部分也归入设计上的原因)。总之,对系统的设计者而言,需明确建立“可靠性”这个重要概念,把系统的可靠性引为重要的技术指标,认真重视可靠性的设计工作,并采取足够的提高可靠性的措施,才能使系统和产品达到稳定、优质的目标。
2.1衡量系统可靠性的指标及其数学关系
2.1.1失效率λ。λ定义为:该种产品在单位时间内的故障数。即:
λ=dn/dt (3)
相对于每一个依然正常工作的样品的失效率,
λ=(1/NS)·dn/dt (4)
式中:NS为总试验品N,经过Δt时间以后,依然正常工作的样品数。
工程上,采用近似式。如果在一定时间间隔(t1-t2)内,试验开始时的正常工作的样品数为ns个,而经过(t1-t2)后出现的故障样品数为n个,则这一批样品中对于每一个正常样品的失效率λ为:
λ=n/[ns(t1-t2)] (5)
失效率λ的数值越小,则表示可靠性越高。λ可以作为电子系统和整机的可靠性特征量,更经常作为元器件和接点等的可靠性特征量。其量纲为[1/h]。国际上常用[1/109h]称为[fit],作为λ的量纲。
例如,军用机载JRC-5M小型电磁继电器的工作寿命为:100只电容器在工作60000h以后,95只继电器正常,5只继电器此期间有可能出现故障。则:
λ=n/〔ns(t1-t2)〕
代入ns=100,n=5,(t1-t2)=60000h,则有:
λ=0.83·10-6/h=830[fit]。