2019-2020中考动点压轴真题,动点专题讲解与答案解析

1.(12分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.

(1)直接写出动点M的运动速度为   cm/s,BC的长度为   cm;

(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)

①求动点N运动速度v(cm/s)的取值范围;

②试探究S1·S2是否存在最大值,若存在,求出S1·S2的最大值并确定运动时间x的值;若不存在,请说明理由

2.(12分)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.

小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.

请你帮助小明继续探究,并解答下列问题:

(1)当点E在直线AD上时,如图②所示.

①∠BEP=   °;

②连接CE,直线CE与直线AB的位置关系是   .

(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.

(3)当点P在线段AD上运动时,求AE的最小值.

3.(10分)在平面直角坐标系中,已知A(1,4)、B(4,1)、C(m,0)、D(0,n).

(1)四边形ABCD的周长的最小值为   ,此时四边形ABCD的形状为   ;

(2)在(1)的情况下,P为AB的中点,E为AD上一动点,连结PE,作PF⊥PE交四边形的边于点F,在点E从D运动到A的过程中:

①求tan∠PEF的值;

②若EF的中点为Q,在整个运动过程中,请直接写出点Q所经过的路线长.

4.(12分)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).

(1)若AB=2√3.

①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;

②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.

(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论“∠PAM=45°”是否总是成立?请说明理由.

5.(12分)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.

(1)若a=12.

①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为  ;

②在运动过程中,求四边形AMQP的最大面积;

(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.

6.(12分)问题提出:

(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;

问题探究:

(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;

问题解决:

(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)

(0)

相关推荐