冯·诺伊曼:无与伦比的天才(上)
在所有的天才故事中,冯·诺伊曼可能算是最为精彩的一个。在学术方面,这位出生于匈牙利的犹太科学家有着诸多非凡的贡献。在数学上,对集合论、算子理论、测度论、几何、分析、拓扑等领域做出基础性的贡献,被称为“伟大数学家的最后一个代表”;在物理学方面,他给出了量子力学的现代数学基础;人们所用的计算机源自“冯·诺伊曼结构”,因此他被认为是现代计算机之父;还对爆炸科学、工程领域、经济学做出贡献;参与曼哈顿计划并提出结构设计……而他本身的趣闻轶事更是让人们津津乐道。对于这样一位成就斐然的学者,我们很难用一篇文章甚至一本书来描述,本文仅旨在讲述他一生最重要的一些贡献,以及有趣的故事。全文将分为上、下两篇推送。
编译 | 哪吒
“大多数数学家证明了他们能证明的,冯·诺伊曼证明了他想要的。”
“约翰·冯·诺伊曼(John von Neumann)可能是有史以来最聪明的人”,想要切实反驳这种说法确实是极其困难的。冯·诺伊曼逝世于1957年,享年53岁。这位博学的匈牙利数学家不仅革新了数学与物理的几个分支,而且对纯经济学与统计学做出了基础性贡献,还在原子弹、核能应用和数字计算的发明中发挥了关键作用。
冯·诺伊曼被称为“伟大数学家的最后一位代表”,他的天才甚至在他有生之年都是传奇性的。从获得诺贝尔奖的物理学家到世界一流的数学家,谈论关于他才华的故事和轶事不胜枚举:
“你知道吗,赫伯(译者注:费米的博士生Herb Anderson),Johnny心算的速度是我的十倍。而我的速度是你的十倍,所以你可以看到Johnny多么让人惊叹。”
——恩里科·费米(Enrico Fermi,1938年诺贝尔物理学奖获得者)
的确,冯·诺伊曼与20世纪科学界一些最重要的人物一起工作且合作过。他和尤金·维格纳(Eugene Wigner)一起上高中;在苏黎世联邦理工学院(ETH)与赫尔曼·外尔(Hermann Weyl)合作;在柏林参加过阿尔伯特·爱因斯坦(Albert Einstein)的讲座;在哥廷根大学给大数学家大卫·希尔伯特(David Hilbert)当助手;在普林斯顿与和艾伦·图灵(Alan Turing)、奥斯卡·摩根斯特恩(Oskar Morgenstern)共事,在哥本哈根与尼尔斯·玻尔(Niels Bohr)共事;在洛斯阿拉莫斯与理查德·费曼(Richard Feynman)和罗伯特·奥本海默(J. Robert Oppenheimer)关系密切。
1933年,冯·诺伊曼移民美国。他一生都致力于拓展认知,追求创新,同时也享受生活的乐趣。据他的朋友波兰裔数学家、物理学家斯塔尼斯拉夫·乌拉姆(Stanisław Ulam)说,他结过两次婚,很富有,喜欢昂贵的衣服、烈酒、快车和黄色笑话。冯·诺伊曼去世后,为他撰写传记的作者诺曼·麦克雷(Norman Macrae)回忆道,人们几乎是不由自主地喜欢上了他,即使是那些不同意他保守政治观点的人(Regis, 1992)。
本文旨在突出“约翰尼”冯·诺伊曼的一些令人难以置信的壮举。敬请快乐地阅读!
早年时期(1903-1921)
冯·诺伊曼(Neumann János Lajos,英文为John Louis Neumann)于1903年12月28日降临在匈牙利布达佩斯的一个富有的犹太银行家家庭,不过他们不守犹太教规。冯·诺伊曼的成长经历可以说是十分优越。他的父亲拥有法学博士学位。他在布达佩斯Bajcsy-Zsilinszky街62号坎-海勒(Kann-Heller)办公室顶楼的一套有着18个房间的公寓里长大(Macrae, 1992)。
冯·诺伊曼 7岁时(1910年)
神童
小约翰是个神童。从很小的时候起,就有关于小约翰能力的奇怪故事: 6岁时能心算两个八位数的运算,用古希腊语交谈(Henderson, 2007);8岁精通微积分(Nasar, 1998);12岁时能读懂领会博雷尔(Émile Borel)的大作 Méthodes et problèmes de la théorie des fonctions(《函数论的方法和问题》;Leonard, 2010)。传闻冯·诺伊曼拥有超强的记忆力,能够根据要求回忆起整本小说和几页电话簿。这种天赋使他能够积累几乎百科全书式的知识,如伯罗奔尼撒战争(Peloponnesian Wars)的历史、圣女贞德审判和拜占庭历史(Leonard,2010)。普林斯顿的一位教授曾经说过,在他30多岁的时候,约翰尼在拜占庭历史方面的专业知识比他的还多(Blair, 1957)。
冯·诺伊曼的父亲马克斯是一位非传统型的家长,据说他会把日常的银行决策带回家,询问孩子们会如何应对特定的投资机会和资产负债风险(Macrae, 1992)。直到1914年,冯·诺伊曼都按照当时匈牙利的习俗在家接受教育。从11岁开始,他进入布达佩斯以德语教学的路德教会学校(Lutheran Gymnasium)。他在这所高中一直读到1921年。著名的是,他和匈牙利另外三个“火星人(The Martians)”的高中时间重叠。(译者注:“火星人”指20世纪上半叶移民美国的杰出匈牙利学者,表示来自小国却智慧非凡。西拉德曾说匈牙利就像火星人的前线。)
利奥·西拉德(Leo Szilard),1908-16年就读于在文理中学;物理学家,构想出核链式反应,并在1939年底致信美国总统给罗斯福,也就是著名的爱因斯坦-西拉德信件,促成了曼哈顿计划的形成——最终建造出第一颗原子弹。 尤金·维格纳(Eugene Wigner),1913-21年就读于路德教会学校;1963年诺贝尔物理学奖得主,曾致力于曼哈顿计划,特别是对原子核理论、基本粒子理论有重要贡献,提出了量子力学中的维格纳定理。 爱德华·泰勒(Edward Teller),1918-26年就读于明塔中学;“氢弹之父”,曼哈顿计划的早期成员,在核物理、分子物理、光化学和表面物理等多个领域有杰出贡献。
“这四名布达佩斯人虽然有着相似背景却各不相同。他们只是在智识能力上以及职业生涯的性质上彼此相似。维格纳……害羞、极为谦虚、安静。泰勒,在经历了一生成功的争议之后,是一个情绪化的、外向之人,并且不会掩饰自己的光芒。而西拉德则热情奔放,性情乖戾,脾气暴躁,热衷活动。约翰尼……都不是。约翰尼最惯常的动机是,他要努力使下一分钟成为他头脑中任何智力活动中最富有成效的一分钟。
——摘自Norman Macrae,John von Neumann,1992(中译本为《天才的拓荒者——冯·诺伊曼传》,下同)
大约在1922-23年,我当时是马尔堡大学的教授,收到柏林的埃哈德·施密特(Erhard Schmidt)教授的信……有一份陌生作者的很长的手稿,署名是冯·诺伊曼,题目是Die Axiomatisierung der Mengerlehre,这是他最终的博士论文,直到1928年才在期刊上发表……我想表达一下我的观点,因为这似乎根本无法理解。我并不认为自己什么都理解,但足以看出这是一部杰出的作品,我可以认出这是“狮子的爪子”。而要回答这些问题,我邀请这位年轻的学者到马尔堡访问,和他一起讨论,并强烈建议他准备一篇非正式的论文来辅以解释这篇技术性很强的文章,强调针对问题的新途径及其基本结果。为此他写了一篇题为Eine Axiomatisierung der Mengerlehre(《门格勒的公理》)的文章,之后我于1925年发表了它。
大学时代(1921-1926)
“显然,一篇博士论文和通过考试并不能算作多大成就。”
“一次我在苏黎世给高年级学生开研讨会,冯·诺伊曼也在班上。我提到一个定理,并说它还没有被证明,可能很难。冯·诺伊曼什么也没说,但五分钟后他举起了手。然后我叫了他,他走到黑板前,写下了证明。在那之后,我就害怕冯·诺伊曼了。”
——乔治·波利亚(George Pólya,匈牙利数学家,“火星人”之一)
哥廷根时代(1926-1930)
“对数学基础和集合的一般理论的研究,特别是希尔伯特的非冲突性理论……,研究旨在澄清集合的一般理论的矛盾性质,从而牢固地建立数学的经典基础。这种研究使人们有可能批判性地解释数学中出现的疑问。”
集合论
冯·诺伊曼1923年的论文。来源:Zur Einführung der transfiniten Zahlen Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum, 1, pp. 199–208.
受到康托尔的研究启发,以及策梅洛在1908年的集合论公理化,和弗伦克尔和斯库莱姆(Thoralf A. Skolem)对策梅洛集合论的批判等工作的影响,冯·诺伊曼为策梅洛集合论的一些问题提供了解决方案,导致了策梅洛-弗伦克尔集合理论(ZFC)的最终发展。他帮助解决的问题包括:
策梅洛集合论中发展康托序数理论的问题。冯·诺伊曼使用有序的集合重新定义序数,而这些有序的集合运用了所谓的∈-关系。 找到一个标准来识别太大而不能作为集合的类的问题。冯·诺伊曼引入了一个准则,即当且仅当一个类可以映射到所有集合的类上时,这个类就太大了而不是集合。 策梅洛在他的分离定理中关于"确定命题函数"的概念有些不精确。冯·诺伊曼用他的函数形式化了这个概念,而构造函数只需要有限的公理。 策梅洛的空集和无限集的基础问题,迭代配对、并集、幂集、分离和选择的公理来生成新的集合。弗伦克尔引入了一个公理来排除集合。冯·诺伊曼在他的正则性公理中修改了弗伦克尔的陈述,排除了非充分基础的集合。
在希尔伯特演讲前的一次数学会议上,一位安静、默默无闻的年轻人,宣布了一项将永远改变数学基础的结果,他叫库尔特·哥德尔,这时他获得博士学位仅仅一年。他用撒谎者悖论“这一陈述是错误的”,以粗略证明,对于数论(Peano算术)的任何有效公理化一致扩展T,都有一个句子σ,在T中是不可证明的。
在场的观众之一,冯·诺伊曼立刻明白了哥德尔不完备性定理的重要性。冯·诺伊曼在会议上报告了希尔伯特证明理论的纲领,并意识到此纲领已经结束了。在接下来的几周里,冯·诺伊曼认识到,通过对哥德尔第一定理的证明进行算术化,可以得到一个更好的结果:没有这样的形式系统能够证明其自身的一致性。几周后,他把他的证明带给了哥德尔,哥德尔感谢他,并礼貌地告诉他,他已经提交了第二个不完备性定理供发表。”
——摘自Copeland等,Computability: Turing, Gödel, Church and Beyond(《可计算性:图灵、哥德尔、丘奇和超越》,2015)
“到1927年中期,约翰尼这只小鹰显然渴望从希尔伯特的巢中翱翔。约翰尼花了他的本科时间来解释希尔伯特的伟大正确之处,但他早已进入了研究生阶段,不得不解释希尔伯特的错误之处。”
——摘自Norman Macrae,John von Neumann(1992)
博弈论
《博弈理论与经济行为》(第一版)
图片来源: Whitmore Rare Books
量子力学
1926年,约翰尼在哥廷根的最初几周,海森堡就自己的理论与薛定谔的理论之间的区别进行了演讲。上了年纪的数学教授希尔伯特问他的物理助理洛塔尔·诺德海姆(Lothar Nordheim),海森堡这个年轻人到底在说什么。诺德海姆给希尔伯特教授寄了一篇后者仍未看懂的论文。引用诺德海姆自己的话,正如Steve J.Heims(译者注:John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death一书的作者)在书中所记录的那样:“当冯·诺伊曼看到这些时,他在几天内就把它们变成了优雅的公理形式,这很合希尔伯特的意。”让希尔伯特高兴的是,约翰尼的数学阐述中大量使用了希尔伯特自己提出的希尔伯特空间的概念。
——摘自Norman Macrae,John von Neumann(1992)
当冯·诺伊曼开始研究量子力学的形式框架时,这个理论已经有了两个不同的数学表述: 海森堡、玻恩(Max Born)和约当(Pascual Jordan)的“矩阵力学”,以及薛定谔的“波动力学”。这些公式的数学等价性是由薛定谔建立起来的,它们都作为特例被嵌入到狄拉克和约当提出的一般形式中,通常被称为“变换理论(transformation theory)”。
然而,这种形式相当繁琐,它依赖于定义不明确的数学对象,即著名的狄拉克函数及其导数。……(冯·诺伊曼)很快意识到希尔伯特空间及其线性算子的这些抽象、公理化的理论可以提供一个更自然的框架。
——摘自Léon Van Hove, Von Neumann's Contributions to Quantum Theory(《冯·诺伊曼对量子理论的贡献》,1958)
Neumann, J. von. "Mathematische Begründung der Quantenmechanik." Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927 (1927): 1-57.(《量子力学的数学基础》) Neumann, J. von. "Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik." Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927 (1927): 245-272.(《量子力学的概率理论》) Neumann, J. von. "Thermodynamik quantenmechanischer Gesamtheiten." Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927 (1927): 273-291.(《量子力学量的热力学》) Neumann, J. von. "Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren." Mathematische Annalen 102 (1930): 49-131.(《厄米特泛函算子的一般特征值理论》) Neumann, J. von. "Die Eindeutigkeit der Schrödingerschen Operatoren." Mathematische Annalen 104 (1931): 570-578.(《薛定谔算子的唯一性》)
冯·诺伊曼《量子力学的数学基础》第一版(Mathematische Grundlagen der Quantenmechanik,1932)
量子力学的确非常幸运,在1925年被发现后的最初几年,就吸引了像冯·诺伊曼这样的数学天才的兴趣。结果,该理论的数学框架得到了发展,其全新的解释规则的正式形式被一个人在两年的时间里(1927-1929)就分析了出来。
——Van Hove (1958)
算子理论
冯·诺伊曼代数的定义: von Neumann代数是由希尔伯特空间上有界算子构成的*-代数,它在弱算子拓扑下是封闭的,且包含恒等算子。
本文译自Jørgen Veisdal,The Unparalleled Genius of John von Neumann
https://www.cantorsparadise.com/the-unparalleled-genius-of-john-von-neumann-791bb9f42a2d