十大经典悖论,辩到怀疑人生
古希腊人最早一头扎进研究悖论的思虑之中,接下来的几百年来,悖论在人类社会中百花齐放,让人欢喜让人忧,某些悖论只是违背常理,而有些却一直悬而未决
一、睡美人问题
我们让睡美人在星期天入睡,同时抛掷一枚硬币,如果正面朝上,那么睡美人会在星期一被唤醒,回答硬币的朝向问题,然后服用含有失忆剂的药物后继续入睡;如果反面朝上,那么睡美人会在星期一和星期二分别被唤醒,回答硬币的朝向问题,然后服药入睡。接着,人们会在周三唤醒她,实验结束。
问题就是,她会怎么回答硬币的朝向问题,尽管硬币正面朝上的概率为 1/2,但是我们却不知道睡美人会怎么回答,有人认为睡美人回答正面朝上的概率为 1/3,因为她并不知道醒来时是星期几,这便产生了 3 种可能:星期一正面朝上,星期一反面朝上,以及星期二反面朝上,这样一来,反面朝上情况下,她被唤醒的概率要大一些。
二、伽利略悖论
大家都熟知伽利略在天文学的成就,然而他也曾涉足数学,发明了无限和正偶数的悖论。首先,伽利略认为,正整数中,有些是偶数,有些不是(没错!)因此,他就猜测,正整数一定比偶数多(好像是对的)。
但是每一个正整数乘以 2 都能得到一个偶数,而每一个偶数除以 2 都能得到一个正整数,那么从无限的数看来,偶数和正整数都是一一对应的,那么,这就说明,在无穷大的世界里,部分可能等于全体!(尽管这听起来是错的)
三、理发店悖论
1894 年,《头脑》(英国一家学术杂志)刊登了路易斯 · 卡罗尔(Lewis Carroll)(《爱丽丝梦游仙境》作者)提出的一个名为 ' 理发店悖论 ',故事如下:乔叔叔和吉姆叔叔一同去理发店理发,店内有三名理发师:卡尔、艾伦、布朗。吉姆叔叔想卡尔来为自己理发,但是他不确定此刻卡尔是否在店内,理发店营业期间,店内必须有一名理发师,他们知道只要布朗没离开理发店,艾伦也不会离开。
乔叔叔声称自己能够证明卡尔一定在店内:卡尔肯定一直在店内,因为如果艾伦没在工作,布朗肯定也没工作。可问题是,艾伦在工作时,布朗也有可能没在工作,乔叔叔认为,一个假设引出两个相悖的结果,那么卡尔绝对在店内。不过现代逻辑分析家们认为这并不是一个悖论:问题的核心是卡尔有没有在店内工作,如果艾伦也在店内,那谁还去在乎布朗呢?
四、乌鸦悖论
乌鸦悖论是关于证据本质的悖论,悖论来自于两句话,有句话说:所有乌鸦都是黑色的。还有与之逻辑相对的一句话:所有不黑的东西都不是乌鸦。一位哲学家说道,首先,我们看到的乌鸦都是黑色的,这为第一句话提供了证据,其次,我们看到的不是黑色的东西,比如一只青苹果,为第二句话提供了证据。
那么悖论是怎么产生的呢?青苹果的例子也能证明 ' 所有乌鸦都是黑色的 ' 这句话,因为这两种假设在逻辑上是对等的,最为大众接受的说法是,青苹果(或者白天鹅)的确能够证明 ' 所有乌鸦都是黑色的 ',但是呢,由于前者提供的论据太少,因此两者的因果关系不甚明显而已。
五、微弱的太阳
目前,我们的太阳比 40 亿年前明亮 40%,这个悖论也就应运而生,如果这种假设成立,那么当时的地球接受的日照比现在少得多,因此,地球表面应是冰雪覆盖的世界。1972 年,著名科学家卡尔 · 萨根(Carl Sagan)提出了这一悖论,许多科学家百思不得其解,因为证据显示,当时地球表面有几处已被海洋覆盖。
温室效应可能是其中的一个原因,如此说来,当时地球上的温室气体是如今的百倍千倍不止,因此我们要找到大量温室气体存在的证据,抱歉,答案是:没有!还有一种说法是 ' 星球进化论 ',该理论认为,随着地球上生命的进化,地球本身(如空气的化学组成)也得到了进化。那么还有一种可能就是地球只存在了几千年,哎!谁知道呢?(哈哈开玩笑啦!地球寿命都有几十亿年啦)。
六、鳄鱼的抉择
这是一个关于骗子的悖论,由希腊哲学家欧布里德(Eubulides)提出,悖论如下:一只鳄鱼从母鳄处偷走一只鳄鱼宝宝,它告诉母鳄,如果你猜对我到底归不归还这条鳄鱼宝宝,我就把鳄鱼宝宝还给你,如果母鳄说:' 你会把孩子还给我的。' 那么一切好说,母鳄会追回自己的宝宝。问题是,要是母鳄回答:' 你不会把孩子还给我 ' 怎么办?
问题就出在这里,要是鳄鱼归还了鳄鱼宝宝,它就违背了当初的诺言,因为母鳄并没有猜对呀;但是,如果鳄鱼没有归还鳄鱼宝宝的话,它也违背了自己的诺言,因为母鳄猜对了呀。如此一来,两只鳄鱼必定会僵持不下,鳄鱼宝宝只能在鳄鱼的嘴里长大了!也有人出了个馊主意:两只鳄鱼把自己的答案透露给第三方,那么无论怎样,第三方至少能够帮它们旅行自己的诺言吧。
七、' 男孩还是女孩 ' 悖论
假如一个家庭中有两个孩子,第一个孩子是男孩的概率是 1/2,那么第二个孩子也是男孩的概率有多大呢?很多人会想当然地认为是 1/2,然而真正的答案是 1/3。
因为这里有四种可能:一个哥哥和一个妹妹,一个哥哥和一个弟弟,一个姐姐和一个弟弟,一个姐姐和一个妹妹,由于必须得有一个男孩,所以排除掉一个姐姐和一个妹妹的可能,所以得到的结论是,另一个小孩也是男孩的可能性是 1/3,有些人要反驳了:' 要是两个孩子是双胞胎呢。' 可是双胞胎也不是真正同时落地的呀,看来数学真是一门十分科学的 ' 科学 '。
八、' 两个信封 ' 问题
' 两个信封 ' 问题是蒙提霍尔一个鲜为人知的变体,基本理论为:给你两个装钱的信封,其中一只信封中的钱是另一只的两倍,选择一个信封,打开,此时,你可以选择拿走手上信封里的钱,或者拿走另一个信封,哪种方式获得的钱最多呢?
一开始,你拿到钱多的那个信封的概率为 50%,假定你手上信封里的钱为 Y,那么接下来在计算概率常犯的一个错误就是:1/2 ( 2Y ) + 1/2 ( Y/2 ) = 1.25Y,如此一来,你就会不停捡起下一只信封,因为这么一算,下一只信封的钱永远会比手上信封的钱要多一些,这也是这个问题成为悖论的原因。针对这个问题,如今许多科学家们给出了自己的答案,但是没有一个答案得到多数人的肯定。
九、汤姆生的灯
汤姆生是 20 世纪的英国哲学家,他的最主要贡献就是汤姆生的灯悖论,该悖论主要研究 ' 超任务 ' 现象(要求完成无限连续任务的任一逻辑佯谬)。
悖论内容如下:一盏装有开关按钮的灯,利用按钮不停开灯,关灯,每一次开(关)灯动作用时为上一关(开)灯动作用时的一半,那么在确定时间内,这盏灯是开着的,还是关着的呢?
从 ' 无限 ' 的本性考虑,我们永远不会知道这盏灯是开着的还是关着的,因为最后的开(关)动作永不存在,这类悖论最早由埃利亚(意大利城市)的芝诺提出,' 超任务 ' 是一种在逻辑上无解的悖论,然而有些哲学家,如贝纳塞拉夫,仍旧认为汤姆生的灯这种机器在逻辑上是可行的。
十、麦克斯韦妖
麦克斯韦妖以 19 世纪的苏格兰物理学家詹姆斯 · 克拉克 · 麦克斯韦命名,麦克斯韦是该悖论的发明者,旨在推翻热力学第二定律,然而牛顿定律可谓坚不可摧,而这一思想便成了一个悖论。
麦克斯韦妖是一个思维实验:一个装满不恒温气体的盒子,盒子中间一堵墙将其分为两个部分,盒子里的妖在墙上开一个洞,使运动较快的分子流动到盒子的左侧空间,这样,这只妖就在盒子内创造了两个空间,一个温度较高,一个温度较低,在热机作用下,温度较高的空间里的分子向较低的空间运动,能量就产生了。然而第二定律认为,孤立系统的熵值恒定不变。看来麦克斯韦妖就和这一定律背道而驰了。
然而,根据第二定律,这只妖不可能在损失自身能量的情况下造成分子流动,该观点由匈牙利物理学家奇拉特提出,有力地驳斥了麦克斯韦妖的理论,论据就是:那只妖在衡量分子运动速度的过程中会损耗能量,此外,这只妖在墙上开洞,以及维持自身运动也会引起盒子内熵值的增加。
10个让你烧脑让你晕的数学悖论!
我的脑子啊 转呀转
悖论是一种很有意思的逻辑游戏,看完这10个经典悖论,你脑子还转的过来吗?
①二分法悖论
概述:运动是不可能的。你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。
古希腊哲学家芝诺(Zeno)提出了一系列关于运动不可分性的哲学悖论,二分法悖论就是其中之一。直到19世纪末,数学家们才为无限过程的问题给出了形式化的描述,类似于0.999……等于1的情境。
那么我们究竟是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,你值得拥有。
②飞矢不动
概述:一根箭是不可能移动的。飞行过程中的任何瞬间,它都有一个暂时的位置,由此可知一枝动的箭是所有不动的集合。
芝诺又一著名悖论,他认为时间的单位是瞬间。事实上,运动不会发生在任何特定时刻,并不意味着运动不会发生。战国时期的诡辩学代表人物惠施也曾说:“飞鸟之影,未尝动也。”
“飞矢不动”实际上暗示了量子力学的观点。以狭义相对论为背景,物体在静止与运动时是不同的。根据相对论,对于以不同速度移动的物体,观察者会产生不同感受,对周围的世界也会持有不同看法。
脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。咳咳,飞矢不动,我没心动。
③忒修斯之船
概述:如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,这艘船还是原来的那艘船吗?
基于同一性的古希腊著名悖论,引发了赫拉克利特、苏格拉斯、柏拉图等的各种讨论。近代启蒙运动中,英国的两位大哲学家托马斯·霍布斯(Thomas Hobbes)、约翰·洛克(John Locke)也曾尝试解答这个问题。答案始终是是非非,难以一锤定音。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
④托里拆利小号
概述:体积有限的物体,表面积却可以无限。
17世纪的几何悖论。意大利数学家托里拆利(Evangelista Torricelli)将y=1/x中x≥1的部分绕着x轴旋转了一圈,得到了上面的小号状图形(注:上图只显示了一部分图形)。然后他得出:这个小号的表面积无穷大,可体积却是 π。
脑洞:原来也有平胸不一定能为国家省布料的时候。
⑤有趣数悖论
概述:1是非零的自然数,2是最小的质数,3是第一个奇质数,4是最小的合数等等;如果你找不到这个数字有趣的特征,那它就是第一个不有趣的数字,这也很有趣。
于是,量子计算领域的研究猿纳撒尼尔·约翰斯(Nathaniel Johnston)把这些有趣的整数定义为一个整体,并将这些整体排成序列,像是质数、斐波那契数列、毕达哥拉斯数等。基于这个定义,约翰斯在2009年6月的博客里提出,第一个没有出现在序列里的数字是11630。2013年11月序列更新之后,他表示14228是最小的无趣数。
脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,扑通n声跳下水……你想起数列是个什么鬼了吗?
⑥球与花瓶
概述:假设无限个球和一个花瓶,现在要进行一系列操作,且每次操作都一样:往花瓶里放10个球,然后取出1个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢?
答案千奇百怪。最直接的是无限个,也有数学家认为,每个球都会被取出来。逻辑学家詹姆斯·亨勒(James M. Henle)和托马斯·泰马祖科(Thomas Tymoczko)提出花瓶里的球最终可以是任意数目,甚至有具体的构造方法。
1976 年谢尔登·罗斯(Sheldon Ross)在他的《概率论第一课》(A First Course in Probability)介绍了这个问题,所以它被称为“罗斯·利特尔伍德悖论”(Ross-Littlewood Paradox)。
脑洞:小学奥林匹克暗袋摸球概率题终极版。
⑦土豆悖论
概述:100克土豆含有99%的水,如果它被榨出了2%,还剩98%的水分,它将只重50克。即100克的土豆含有1克干物质(dry material),当还剩98%的水分时,1克将对应2%的含量,因此含98%水分的土豆重50克。
脑洞:理科生们笑到内伤。
⑧饮酒悖论
概述:酒吧里会发生这种情况:如果有人在喝酒,那么每个人都在喝酒。乍看起来是一个人喝酒导致了所有人喝酒。实际上,如果酒吧里至少有一个人没在喝酒,那么按照数学中的实质条件(material conditional),对那些没喝酒的人来说,有些人在喝酒,这些人中的每个人都在喝酒,情况依然成立。
实质条件的示意图如下:
“饮酒悖论”由于雷蒙德·斯穆里安(Raymond Smullyan)的书而出名,这本书的名字就叫《这本书叫什么名字》(What Is the Name of this Book?)。
⑨理发师悖论
概述:小城的理发师放出豪言:“我只帮城里所有不自己刮脸的人刮脸。”那么问题来了,理发师给自己刮脸么?如果他给自己刮脸,就违反了只帮不自己刮脸的人刮脸的承诺;如果他不给自己刮脸,就必须给自己刮脸,因为他的承诺说他只帮不自己刮脸的人刮脸。两种假设都说不通。
赫赫有名的罗素悖论,由英国数学家勃兰特·罗素教授于20世纪初提出。这条悖论证明了19世纪的集合论是有漏洞的,几乎改变了数学界20世纪的研究方向。
脑洞:对于不刮胡子的女理发师不成立。
⑩祖父悖论
概述:如果你乘坐哆啦A梦的时光机,回到你爷爷奶奶相遇之前,杀死你的爷爷会发生什么?如果杀死了你的爷爷,那么你就从未诞生;如果你从未诞生,如何回到以前杀死你的爷爷?
祖父悖论看似杜绝了人为操纵命运的可能,过去无法改变,爷爷一定会在孙子的谋杀中幸存下来;还有种可能是,你进入了另一个平行宇宙,这是你从未生活过的世界,但你的爷爷奶奶却也在这里。
这个关于时间旅行的悖论源自罗伯特·海因莱因的短篇小说,近来又出现在诺兰导演的《星际穿越》中。
脑洞:如果你重返二战前,杀死希特勒,成功阻止了二战的爆发。然而,如果没有发生二战,回去刺杀希特勒的理由是什么?时间旅行本身就消除了旅行的目的,本身就在质疑本身。
本文由超级数学建模编辑整理
本文来源于数据与算法之美
,