第四代半导体技术原理与优势,为何值得期待?

随着以SiC与GaN为主的第三代半导体应用逐渐落地,被视为第四代之超宽禁带氧化镓(Ga2O3)和钻石等新一代材料,成为下一波瞩目焦点,特别是Ga2O3 在超高功率元件应用有着不容小觑的潜力,而其优势与产业前景又究竟为何?

Ga2O3 技术原理与优势

虽然以Si基板为主的组件已主导现今科技产业之IC与相关之电子元件,然而此类产品仍面临许多极限,无论在高功率或是高频元件与系统,除不断精进结构设计外,新兴材料亦推陈出新。特别是第三代半导体以SiC与GaN为主之高功率元件与系统,在大电力与高频元件上被赋予重任,更已陆续应用在相关之产业。

尽管如此,被视为第四代之超宽禁带氧化镓(Ga2O3)和钻石等新一代材料,特别是Ga2O3 因其基板制作相较于SiC与GaN更容易,又因为其超宽禁带的特性,使材料所能承受更高电压的崩溃电压和临界电场,使其在超高功率元件之应用极具潜力。

▲ 上图(a)为现今常用之半导体材料所适用之频率与工作功率范围,(b)为现今常用之半导体材料其对应之能隙与崩溃电场。可发现 Ga2O3 应用之功率范围高达 1 kW-10 kW。

Ga2O3 拥有五种晶相(polymorphs)(monoclinic(β-Ga2O3),rhombohedral(α),defective spinel(γ), cubic(δ), or orthorhombic(ε)),且拥有约 4.5-4.9eV 的超宽禁带与临界电场(Ebr)高达 8 MV/cm,相较于GaN 的能隙 3.4eV,SiC 的能隙 3.3eV 都高出许多,在 Barliga 评价(BFOM)宽禁带半导体的系数中 Ga2O3 高达 3444,是 SiC 的十倍、GaN 的四倍,此一系数关系着元件所能承受之最高电压,由此 BFOM 系数也可以看到 Ga2O3 在高功率元件之应用潜力。(相关之材料特性比较如表(一)所示。)

▲ 表(一)相关之材料特性比较。

在高功率元件之应用,除其崩溃电场需够高外,在导通电阻方面也是重要参数之一。如图(二)示,Ga2O3 之导通电阻也较GaN与SiC低,也因此Ga2O3 在工业或是军事上作为整流器时将会是非常好的应用。

▲ 图(二)宽禁带材料其崩溃电场与导通电阻之关系图。

车用、光电都看好,应用广泛且前景可期

Ga2O3 具备许多优良的特性,使其可以应用在许多方面,特别是其宽禁带特性能在功率元件上有显著的应用,诸如电动车、电力系统、风力发电机的涡轮等都是其应用范围。而Ga2O3 的薄膜透明,不仅在光电元件方面可作为透明面板上的组件,光感与气体传感器领域也都可以是其应用范围。

也因此Ga2O3 产业前景方面应用广泛,且潜力极大仍有许多组件等待被开发与商业化,可说是很具前瞻性的材料之一!

▲ Ga2O3 传感器应用现况与未来。

▲ Ga2O3 应用现况与未来。

我们离Ga2O3 落地还有多远?

Ga2O3 未来潜力值得期待,不过现阶段仍有许多问题有待克服。

目前 Ga2O3 在材料本身主要之问题为散热与P-type掺杂不易达成;散热方面,可以发现热导率(0.25 W/cm.K)相较于其他高功率材料差;SiC热导率 4.9 W/cm.K,GaN 热导率2.3 W/cm.K,散热问题严重的话会造成在组件操作方面接口的热崩溃,目前主要透过结构设计解决此问题,例如使用高导热系数的基板帮助分流其操作的高温。

而P-type掺杂则更为棘手,目前尚未有足够的电洞迁移率文献被发表提出,现有资料主要归纳出以下三个原因:首先因为Ga2O3 在氧的共价键方面为2p 轨域,拥有非常强的键结电子不容易被抢走,造成深受子态(deep acceptor state)。第二,Ga2O3 中的电洞有效质量(effective mass)太高,造成平坦价带(flat valence band)边缘倾向于氧。最后,因为自由电洞的容易被自我捕捉(self-trapped)于晶格扭曲(latticedistortion)中,使扩散与低电场的漂移都不太可能去实现。这是 Ga2O3 目前所面临的一些问题,有待去改善以达到更多元的应用。

长晶部份,主要有 floating zone(FZ)、edgedefined film(EFG)、与 Czochralskimethods(CZ),这些方法在制作蓝宝石基板已经使用多年,因此在生产浅潜力上相较其他化合物半导体 GaN 和 SiC,更能大量生产与降低成本。

在现今商业生产上主要应用EFG长晶法(如下图所示),此方法能生产大量且高纯度的Ga2O3 晶圆,在N2/O2下融化高纯度(5N)的Ga2O3 Powder 在 Ir 的坩锅中,并以每小时 15 mm 的速率从晶种中拉出晶棒,最后再去清洗切割,若要 n-type 掺杂后续再掺 Sn 或Si 等元素。

▲ EFG 长晶法成长 Ga2O3 晶棒之示意图。

综观上述,Ga2O3 属于新开发之材料,潜力极佳与产业应用前景可期。

来源:

来源:科技新报(台) 作者:洪瑞华

(0)

相关推荐

  • 浅谈Ga2O3器件仿真技术的难点

    浅谈Ga2O3功率半导体器件仿真技术的难点 目前,以GaN和SiC为代表的第三代半导体材料具有禁带宽度大.临界电场高和电子饱和漂移速度快等优势,突破了硅与传统化合物材料(GaAs.InP等)技术发展的 ...

  • 一文带你认识第三代半导体材料双雄——碳化硅VS氮化镓

    进入21世纪以来,随着摩尔定律的失效大限日益临近,寻找半导体硅材料替代品的任务变得非常紧迫.在多位选手轮番登场后,有两位脱颖而出,它们就是氮化镓(GaN)和碳化硅(SiC)--并称为第三代半导体材料的 ...

  • 金刚石在半导体器件领域的应用

    金刚石的"高贵" 说起"Diamond"给人第一印象是什么? 无疑是高贵优雅,晶莹剔透,尤其对于女性来说钻石是充满诱惑的,正如1948年戴比尔斯经典广告所宣传& ...

  • GaN HEMT发展现状与市场前景

    GaN HEMT发展现状 1993年M.A.Khan等人制备了第一只氮化镓高电子迁移率晶体管(GaN HEMT),随后GaN HEMT在高频微波大功率方面开展了广泛的研究,经过后续十几年的研究发展,解 ...

  • 英飞凌推出高功率和可靠性的CoolGaN™ IPS系列产品

    来源:半导体器件应用网 [哔哥哔特导读]近日,英飞凌推出了面向30 W-500 W功率级应用的CoolGaN™ IPS系列产品,并举行CoolGaNTM IPS 第三代化合物半导体新品发布媒体沟通会. ...

  • 最近热炒的“氮化镓”到底是什么?

    第三代半导体材料以氮化镓.碳化硅.氧化锌.金刚石为代表,是5G时代的主要材料,其中氮化镓和碳化硅的市场和发展空间最大. 出品|每日财报 作者|刘雨辰 受到外围市场和国际环境的影响,A股近期走势非常弱, ...

  • 【报名倒计时37天】极端制造、超精密加工、封装散热、高功率激光、量子前沿、半导体……2021金刚石论...

    第六届国际碳材料大会暨产业展览会 金刚石论坛 2021年12月13-15日 上海跨国采购会展中心 1 组织机构 Conference Committee 主办单位:DT新材料.中国超硬材料网 承办单位 ...

  • 第三代宽禁带功率半导体迎来加速发展,我国或能赶超

    近年来,以碳化硅和氮化镓为代表的第三代宽禁带功率半导体迅猛发展,已成为中国功率电子行业的研发和产业化应用的重点. 抓住第三代宽禁带功率半导体的战略机遇期,实现半导体材料.器件.封装模块和系统开发的自主 ...

  • 盘点金刚石衬底GaN基微波功率器件研究进程

    2006年,美国Cree公司的Wu等人研制的GaN基高电子迁移率晶体管(HEMT),4GHz时的输出功率密度达到 41.4W/mm.近十多年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业. 氮化镓 ...

  • 【业内热点】同为宽禁带半导体材料,SiC和GaN有何不同?

    禁带宽度是半导体材料的一个重要特征参量,其大小主要决定于半导体的能带结构.禁带越宽,意味着电子跃迁到导带所需的能量越大,也意味着材料能承受的温度和电压越高,越不容易成为导体:禁带越窄,意味着电子跃迁到 ...

  • 碳化硅与氮化镓材料的同与不同

    半导体是一种介于导体与绝缘体之间的材料,它具有导电性可控的特点.当半导体受外界光和热的刺激时,其导电能力将会有显著变化,在纯净半导体中加入微量杂质,其导电能力会急剧增强.自科学家法拉第发现硫化银以来, ...