杏林荟萃之医学英语:免疫系统
序:前面为大家介绍了抗原这一章节,大家都知道抗原抗体是免疫学的两个重要的组成部分,今天我们再为大家介绍抗体这一章节,因为免疫学的词汇非常多,免疫系统我们也只为大家介绍这两个章节,希望大家可以掌握记单词的方法,或者提出更好的方法!
这些单词为基本的必须记忆的词汇,个别单词可通过拆分的方法记忆,因为英语源于拉丁语,所以基本上每一个单词都有词根,我们可以把单词拆分成熟悉的词语。如果这个单词中没有我们所熟悉的词根,我们可将该词背过。
1.antibody:n. [免疫] 抗体
上一章节为大家介绍了抗原是antigen,我们会发现抗原抗体之间的相似之处,同为前缀anti-,body为身体的意思,加在一起便可以构成抗体antibody。
2.immunoglobulin :n.免疫球蛋白
免疫球蛋白还有另一种写法是immune globulin,本书中为immunoglobulin,由上一章节我们介绍过的免疫:immune与球蛋白globulin组成。
3.chain:n.链
4.variable:adj. 变量的;可变的;易变的,多变的;变异的,[生物] 畸变的
n. [数] 变量;可变物,可变因素
5.constant:adj. 不变的;恒定的;经常的
n. [数] 常数;恒量
6.region:n. 地区;范围;部位
7.bind:n. 捆绑;困境;讨厌的事情;植物的藤蔓
vt. 绑;约束;装订;包扎;凝固
vi. 结合;装订;有约束力;过紧
8.complementarity:n. 互补性;补充;补足
9.determine:v. (使)下决心,(使)做出决定
vt.. 决定,确定;判定,判决;限定
vi. 确定;决定;判决,终止;[主用于法律]了结,终止,结束
10.domain:n. 领域;域名;产业;地产
11.hypervariable:n. [经] 超变量;高变的,变异度高的
hyper可谓前缀,variable的意思为多变的,可拆分单词来记忆
12.hinge:n. 铰链,折叶;关键,转折点;枢要,中枢
v. 用铰链连接;依…为转移;给…安装铰链;(门等)装有蝶铰
13.secretory:adj. 分泌的;促进分泌的
n. 分泌器官;分泌腺
14.fragment:n. 碎片;片断或不完整部分
vt. 使成碎片
vi. 破碎或裂开
15.isotype:n.同种型
isotropicadj. [物][数] 各向同性的;等方性的。而type的意思是类型。可取iso与type组合而成。
16.allotype:n. 同种抗免疫球蛋白
allo的意思为adj. 紧密相联的;同分异构的,allo与type共同组成allotype。
17.idiotype:n.独特型
Idio的意思为adj. 特殊的,专有的n. 个性,习性(根),可与type共同组成该词。18.polyclonal:adj. 多克隆的;多元性繁殖系的;多细胞系的
由ploy-加克隆clonal组成
19.monoclonal:adj. 单克隆的;单细胞繁殖的
由mono-加clonal组成
20.gengtic:adj. 单克隆的;单细胞繁殖的
二、组合词汇
这些词语都是由以上基本词汇组合而成,我们可见,一个章节的基本词汇中有许多大家已经熟悉,较难的医学专有名词比较少见。
1.membrane immunoglobulin:膜表面免疫球蛋白
2.variable region:可变区
3.constant region:恒定区
4.hypervariable region:超变区
5.antigen-binding site:抗原结合部位
6.complementarity-determing region:互补决定区
7.heavy chain:重链
8.Light chain:轻链
9.hinge region:铰链区
10.Jioning region:连接链
11.Ployclonal antibody:多克隆抗体
12.Monoclonal antibody:单克隆抗体
13.Gengtic engineering antibody:基因工程抗体
Title:Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.
Abstract:Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.