高速电机转子冲片的强度设计(一)——考虑高速离心力的计算方法(上)

1        前言

新能源汽车电驱动系统的主驱电机,正在向高功率密度、高转矩密度、高效率、低成本、低损耗、轻量化、小型化、集成化、系列化等方向发展。这给各大零部件供应商,提出了一个又一个的新问题和新挑战。

为了降低结构尺寸、重量、原材料成本,以及为了提高功率密度和转矩密度等,新能源汽车驱动电机转子的极限转速,从几年前的5000RPM~8000RPM,逐渐提高到12000RPM~17000RPM。部分产品在实验室中,跑出了20000RPM甚至更高的性能。高速化的好处良多,但也给冲片结构强度设计,提出了越来越高的要求。

由于新能源汽车主驱电机,绝大多数供应商采用了内置式永磁同步电机设计,即永磁同步电机(Permanent Magnet Sychronous Motor,PMSM),本文以ANSYS软件官方案例中的某永磁电机模型为例,分享一些其在冲片强度设计中的几个常见问题和解决方案。

下图为2002、2004、2010、2017款普锐斯电机转速发展历程。

图-1 四代普锐斯转子转速的演进历程

作为行业标杆,这四代普锐斯电机的极限转速,从6000RPM一路飙升到17000RPM,转子外径,从2004版的161.8mm减少到140.5mm。若换算成转子外圈线速度的话,从2004版的约50m/s,增加到2010版的约110m/s,再到2017款更进一步提升到约143m/s。从强度设计角度审视,达到了业内的顶尖水平。

由于离心力为线速度的平方关系,在十几年间,冲片的离心力作用增加了7倍。我们知道,机械产品的性能每提升百分之几十,都是一个巨大的进步,若要提升数倍性能,则必然需要超常规的手法与努力。

如此独门绝技,都是如何历练而成的呢?很遗憾这属于丰田公司的核心机密,没有人会完完全全的示与大众。通过仿真技术,我们却可以较为方便准确的窥探,掩盖在技术封锁铁幕下的秘密,隔空预判友商的产品性能,并汲取经验技巧。

本文以ANSYS Workbench 环境中的结构静力学及动力学分析模块为例,主要与大家探讨,内置式永磁同步电机转子冲片强度设计中的以下内容:

1、  考虑高转速离心力的计算方法;

2、  考虑转子轴与冲片过盈配合内应力的计算方法;

3、  同时考虑离心力过盈配合的计算方法;

4、  转子冲片离心力过盈配合内应力,对模态频率的影响;

5、  转子爆裂转速工况下,考虑塑性材料的计算方法;

6、  转子冲片与轴过盈配合处,极限失效扭矩最大压装力的计算方法;

7、  磁钢与转子冲片磁钢孔间,不同连接关系设置,对冲片应力的影响;

8、  网格密度质量,对冲片应力的影响;

9、  减重孔应力释放槽几何形状过渡设计等,对冲片应力的影响;

10、磁钢温度对冲片应力的影响;

11、转轴直径变化及考虑过盈配合内应力,对冲片应力的影响;

12、电磁脉动力对转子应力的影响;

13、 转子冲片与转轴平键连接处剪切应力评定方式;

14、 通过子结构技术,节约计算量的方法;

15、依靠子模型技术,快速调整局部结构的计算方法;

16、将受力变形后有限元模型,重构为几何模型的处理方法;

本文所用的主要分析模型,源于ANSYS软件的官方案例,如下图所示。部分案例也会采用其他模型进行演示。

图-2 分析用模型

下面分别进行介绍与演示。

2       01节考虑高转速离心力的计算方法

本节主要技能点:

1、 借助三维机械设计软件Solid Works,建立适合仿真的薄片状几何模型;

2、 采用Workbench环境的静力学分析模块,加载转速荷载,进行静强度仿真。

离心力,是高速电机转子冲片受到的一种比较主要的外载形式。本节以静力学分析模块,通过加载惯性荷载方式,进行演示与计算。

由于离心力为径向力,转子的轴向长度基本不影响结果,可以采用2D平面模型或薄片状3D模型进行计算。本文采用后者,可适当节约计算量。

采用3D模型的另一个原因是通过平面模型,不方便加载由于转子与冲片过盈配合引起的内应力效应。为方便后续案例演示,直接建立3D模型更为方便。

利用Solid Works软件,对ANSYS官方案例模型,进行切割操作,以将完整转子切割为1mm轴向长度的薄片。如图-3所示。

图-3 切割为薄片模型

切割后的冲片模型如下。其未保留磁钢和转轴等零件,需单独绘制。如图-4所示。

为减少铁损,新能源汽车用转子冲片,一般采用0.3mm左右厚的冷轧硅钢材质。冲片组装为转子后,各片间的轴向方向一般主要采用自粘胶、自铆、焊接等方式进行固定,并适当依靠磁钢槽内胶水进行固定。由于转子冲片在运行中,轴向受力(电磁不平衡力、外部轴向推力等)基本可以忽略,采用1mm薄片模型,可简化的代表实际。

图-4 切割后的冲片模型

由于切割为薄片时,尚未保留磁钢等模型,为方便修改,对360°圆周冲片模型,借助Solid Works软件,利用草图切割为1/8扇形局部。如图-5所示。

与电磁分析类似,强度计算时,为节约计算量,也可以只计算最小对称区域的扇形模型。并进行适当添加倒角,绘制磁钢模型等操作。对于本文为1/8模型。

由于离心力的存在,本转子冲片,被径向隔磁桥与轴向隔磁桥,分割为4组近似U形的外圈与靠近转轴一侧的内圈组成。这两类隔磁桥,主要承担了外圈U形冲片、磁钢、磁钢胶水等引起的离心力作用。

在尺寸、转速、材料等一定情况下,转子磁钢外圈U形区域的面积,既质量越小,各个隔磁桥处受到的总离心力越小。相对而言,更有利于进行高速运行。

实际进行性能开发工作时,应充分与电磁性能设计人员进行沟通交流,选取较为合适的总体拓扑结构,而后再进行细节的强度仿真设计。

如转子采用油冷或风冷等强化传热设计,还应与散热性能设计人员充分交流,以选择较为全面合理的综合结构与性能。

对于应力分析而言,隔磁桥附近为关键受力位置。应尽量详细的保证该处附近的尺寸与形状,不发生激烈变化,尤其应避免尖锐直角等形状。在形状和截面明显改变处,如隔磁桥两侧根部,应采用复杂曲线、圆弧等平滑过渡形式,以保证离心力传递路径平顺连续,从而降低应力。适当时,还应采用各种缓解及释放应力的结构设计。

另外,为尽量避免传力路径的突变,隔磁桥根部附近形状过渡形式,应尽量采取“外凸”状设计,如向外倒角等,尽量避免“内凹”状设计,如开槽开孔等。但专用于缓解应力的应力释放孔等设计除外。

图-5 切割模型

图-6为在磁钢槽处,局部修改为倒角过渡形式。具体的倒角形式,应充分与电磁性能设计人员和冲压工艺人员进行沟通与交流。并且尽量采用较为平缓的大尺寸倒角特征,以缓解应力,及减少由于冲压模具的尖锐,而引起的寿命降低问题。

图-6 添加局部倒角

经过多次调整,磁钢槽附近,采用图-7所示的倒角过渡形式。

下面解析一下图-7中两个磁钢孔的受力关系。由于本案例只考虑离心力作用,那么图中左侧开孔磁钢长度方向与径向离心力更加接近,则主要的离心力,将贴合到磁钢孔外圈一侧,右侧磁钢与径向夹角较大,一部分离心力,将被右上角磁钢孔的凸台所承担。这对于减少隔磁桥受力是有利的。因为相当于一部分离心力,不再直接从U形外圈区域,传递到尺寸较窄小的隔磁桥处,而是转移到相对内侧的区域。

本节为简化计算,不考虑右上角凸台附近的受力影响。以上细节连接设置,对结构强度影响问题,将在本文后半部分,以专题形式展现。

图-7 倒角后模型

下面绘制磁钢模型。在离心力作用下,磁钢有径向飞出的变形趋势,与电磁分析将磁钢等距离“悬空”在磁钢槽内部不同,强度计算时,应尽量将磁钢草图,绘制为贴近径向外圈边缘,并在四周倒角。如图-8所示。

如未进行贴近调整工作,应力分析时需要采用接触方法连接,但是由于有初始间隙的存在,容易引发刚体位移问题,以及其他不利因素。手工删除此处间隙,将减少后续计算时的风险。

对于SolidWorks软件,一般需要通过绘制草图,并且设置草图尺寸配合关系等实现以上操作;对于ANSYS SCDM模块,可以通过“移动”功能,直接将磁钢拖拽到贴合面。

图-8 绘制磁钢草图

选中磁钢的草图特征,利用拉伸命令创建磁钢模型。需要注意的是,默认情况下Solid Works软件中,在进行拉伸操作时,会将新老特征融合为一体,从而无法区分磁钢模型和冲片模型。应取消选择“合并结果”设置。如图-9所示。

图-9 创建磁钢模型

至此,冲片与磁钢部分模型建立完毕,下面建立转轴的薄片状简化模型。

利用“评估”中的“测量”功能,选中冲片内孔,测得内孔半径为13mm。如图-10所示。继续利用草图功能,建立转轴部分的几何模型。

图-10 测量内径

为方便调整与装配模型,新建转轴的零件文件。如图-11所示。

图-11 新建转轴零件模型

为方便后续过盈配合计算时,方便划分网格,将26mm直径轴的内侧建立24mm直径草图,并借助分割功能将完整转轴分割为0mm-24mm的内圈及24mm-26mm的外圈两部分。

为方便划分网格与设置旋转条件等,转轴为空心。如图-12所示。

对于实心轴而言,中心部分几乎不受力,适当开孔将不影响外圈应力规律。

图-12 分割转轴模型

分割前,应确认继续使用一个空模板。如图-13所示。

图-13 继续分割

需要注意的是,Solid Works默认情况下,会将分割后的模型“消耗”,既删除。应取消选择,并分别选取需要分割的模型并确认。其可直接选取模型表面,也可在左侧特征树中点选。即将进行分割的模型,将被金黄色覆盖提示。如图-14所示。

图-14 分割模型

至此,1/8转子冲片模型和转轴模型建立完成。下面需要建立更高一级装配体模型,将以上零件,组装为总体的转子模型。

新建装配体,如图-15所示。

图-15 新建装配体

分别打开冲片模型和转轴模型,如图-16所示。

图-16 打开需组装的零件模型

由于冲片为1/8反对称结构,最少应插入两次冲片零件模型,并将其中一个使用“旋转零部件”功能,旋转为反对称的正反面位置关系。如图-17所示。

“反对称”指分析对象关于某个面反向镜像对称。如以键盘上“/”字符为例,其对称效果为“//”;反对称效果为“\/”。

后续采用“配合”功能,将各个零件的组装配合关系,进行组装连接。

图-17 旋转反对称的冲片模型

选中其中一个冲片的正面表面,右上角采用“配合”功能进行共面装配。如图-18所示。

图-18 进行共面装配

分别选取冲片正面的两个平面,采用“配合”功能进行组装。如图-19所示。

图-19 冲片的共面组装

选择冲片内孔,进行“同轴心”装配。如图-20所示。

图-20 同轴心装配

至此完成一个反对称的1/4模型的组装工作。下面采用圆周阵列功能,将模型阵列为完整一圈。如图-21所示。

与JMAG等电磁软件,允许只计算局部对称的扇形模型,并复制显示不同。本文所用方法,均为对完整一圈模型进行计算。这在一定程度上增加了3/4的计算量。

对于转子冲片模型而言,其本身计算量较小,该影响不明显,但是、对于更大更复杂的模型,充分利用对称效果,建立并计算最小对称区域的局部模型,并扩展为整体,将有利于节约计算量,提高效率。该内容将在本文后续案例中进行演示。

图-21 圆周阵列冲片模型

设置选取冲片外表面,设置阵列扇区角度90°,数量4组。如图-22所示。设置成功后,会议淡黄色轮廓进行预览。

图-22 圆周阵列模型

冲片部分建模完成,下面插入转轴模型。如图-23所示。

图-23 插入转轴部分模型

采用上文方法进行配合后,将模型另存为X-t格式。如图-24所示。

图-24 保存为中间格式

至此,几何模型部分建立完成,打开并导入ANSYSWorkbench环境的静力学分析模块。双击静力学分析模块或者单击其,并向右拖拽到纯白色项目目录中的红框区域。如图-25所示。

(0)

相关推荐