中文版!学习 TensorFlow、PyTorch、机器学习四件套!(附免费下载)

学习深度学习以及面试肯定离不开下面的4个重要的资料,更何况是中文版!
获得方式:

1、扫码下方二维码,关注公众号「互联网达人圈」

2、回复「四件套」(建议复制)即可获取

👆长按上方二维码 2 秒
回复「四件套」即可领取
1. TensorFlow深度学习
书籍特点
            中文基础介绍有理论也有实战结合
2. PyTorch
教程根据 PyTorch 官方版本目录,完整地还原了所有的内容。包括简单的环境搭建、快速入门相关 API、高级操作、图像处理实战、文本处理实战、GAN 和强化学习等,基本涵盖了目前所有深度学习相关的知识点。
教程目录
3. 《统计学习方法》(第2版)
内容简介:
统计学习方法即机器学习方法,是计算机及其应用领域的一门重要学科。本书分为监督学 习和无监督学习两篇,全面系统地介绍了统计学习的主要方法。包括感知机、k 近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM 算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和 PageRank 算法等。除有关统计学习、监督学习和无监督学习的概论和总结的四章外,每章介绍一种方法。叙述力求从具体问题或实例入手, 由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。 为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。 本书是统计机器学习及相关课程的教学参考书,适用于高等院校文本数据挖掘、信息检索及自然语言处理等专业的大学生、研究生,也可供从事计算机应用相关专业的研发人员参考。
课件
4. 《神经网络与深度学习》中文版
介绍
《神经⽹络和深度学习》是⼀本免费的在线书,对读者数学知识需求适度,兼顾理论和动手实践。⽬前给出了在图像识别、语⾳识别和⾃然语⾔处理领域中很多问题的最好解决⽅案,教读者在神经⽹络和深度学习背后的众多核⼼概念。
获得方式:

1、扫码下方二维码,关注公众号「互联网达人圈」

2、回复「四件套」(建议复制)即可获取

(0)

相关推荐