【多相流沸腾04】Level set
Level Set方法是美国数学家Osher(加州大学洛杉矶分校)和Sethian(加州大学伯克利分校)合作提出的。后者因为对Level Set的贡献获得了去年美国数学会与工业应用数学会联合颁发的维纳奖。Level Set方法是他们在88年文章“Front Propagation with Curvature Depedent Speed: Algorithms Based onHamilton-Jacobi Formulation"中第提出的。这个方法提出以后被成功地应用于流体力学,计算机图形学,材料科学等领域。应用于图像处理和计算机视觉始于93年Caselles等人和95年Malladi等人的两篇著名文章。
与VOF不同,LS方法不需要重构界面,而是将相界面看作光滑连续的符号距离函数f的零等值面。只要求出每个时刻t的函数值,就可以知道其等值面的位置,即运动界面的位置。
界面两侧的距离函数符号相反。符号距离函数在速度场中的演化可用LS输运方程描述
由于数值误差,直接离散求解上述方程得到的距离函数容易失真,有可能导致表征界面的零等值面最终耗散掉,因此除了采用高阶格式(如WENO格式)求解输运方程外,需增加重新初始化的环节。
LS方法已被用于求解各种沸腾问题,Son和Dhir首先采用LS方法求解了膜态沸腾问题。随后Dhir课题组对该方法进行了改进,并研究了池沸腾中单个气泡的生长和脱离过程、单个成核点产生的多气泡竖直和水平方向的融合过程,计算结果均与实验相吻合。此外Dhir课题组还结合移动网格技术,研究了不同重力水平下过冷池沸腾中单气泡的动力学行为和传热特性,发现过冷度在微重力下对气泡尺寸的影响更显著。Gibou等使用虚拟流体方法实施了相界面边界条件,研究了二维膜态沸腾过程,计算结果在定性上与实验吻合。Li等采用耦合相变的LS方法研究了加热面厚度对FC-72单气泡饱和沸腾的热响应规律。
由于采用光滑连续的符号距离函数,LS方法可准确计算界面法线方向、曲率及与曲率有关的物理量,并且对于相界面处不连续的密度粘度等物理量的光顺效果较好,这是LS方法的显著优点,此外LS方法很容易由结构化网格推广到非结构化网格。LS方法主要的缺点是不能保证质量守恒,这是因为无论LS输运方程还是重新初始化方程都不具备质量守恒的内在属性,质量丢失或增加可能发生在求解过程的任何环节,特别是在界面发生严重扭曲变形时。为了克服质量不守恒现象的发生,Olsson等提出了改进的守恒LS方法,通过采用光滑Heaviside函数作为距离函数和二阶TVD格式,大幅减轻了质量丢失现象。Moghadam等引入双曲正切函数作为距离函数,耦合高阶紧致差分格式提出了改进的CCLS方法。国内对LS方法的改进也有较多研究。浙江大学罗等提出了基于LS方法的质量丢失补偿算法,采用Pijl等提出的关系式由符号距离函数得到流体体积函数,将LS方法每个时间步长内丢失的总质量按曲率加权补偿给相界面网格,该方法已成功应用到复杂的雾化和蒸发过程中。天津大学黄筱云发展了自适应正交树形网格的快速粒子LS方法(FPLS),并将其成功应用到波浪水槽的模拟中,该方法通过半拉格朗日法计算树形网格上的LS方程,并构建一种快速步进技术,以向外扫描的方式从交界面开始重新对符号距离函数初始化,而不需要迭代求解初始化偏微分方程。Yu等通过在初始化方程中加入质量修正项提高质量守恒的精度,并成功应用到三维气泡上升的两相流问题中。
LS方法由于很容易从二维扩展到三维,无需界面重构以及表面张力的计算精度高等优点,成为除VOF外另一较为流行的界面捕捉方法,多物理场建模软件COMSOL即采用LS方法求解气液两相流问题。