仔猪断奶前死亡率的管理:问题和机会
Managing piglet pre-weaning mortality : issues and opportunities
仔猪断奶前死亡率的管理:问题和机会
作者: Michael Ellis, University of Illinois
美国和加拿大断奶前死亡率在增加
Total losses(Stillborn + Pre-weaning Mortality)
总损失:死胎+断奶前死亡
美国:当前总损失超过总出生数的20%
降低断奶前死亡率
复杂的,多方面原因
没有简单的解决办法
需要一个系统的方法:健康、设备、育种、营养、环境、管理
是什么限制了断奶前死亡率的进展?
猪、人、缺乏研究、技术发展受限
限制性因素:猪的总仔数的增加
潜在的遗传进展趋势:总仔数每年以0.2头仔猪数量增加
丹麦:总仔数每年以0.29头的仔猪数量增加
加拿大:总仔数每年以0.22头仔猪数量增加
美国:总仔数每年以0.19头仔猪数量增加
限制性因素:死胎-一个越来越严重的问题?
随着总仔数的增加,死胎的数量及比例也在逐渐增加
窝产仔数与平均出生重之间的关系
限制性因素:猪的出生重降低
仔猪的平均出生重降低
窝内出生重的差异化增加
更多小出生仔猪的数量增加--增加了后续的断奶前死亡率
限制性因素:低出生重仔猪具有高死亡率
出生重与断奶前死亡率之间的关系
Uniform litters:大小均匀的组
Mixed litters:一半大的和一半小的
为什么交叉寄养的时候,把大小差不多的仔猪根据母猪的有效奶头数量进行从新分配呢?
我们是否需要干预?
不同出生重的死亡率之间可能存在不同?
Cool:凉
在小于25度的温度下,出生轻的仔猪和出生重的仔猪断奶前死亡率都降低
Drying + Warm:干燥及温暖
在大于25度的温度下,出生轻的仔猪断奶前死亡率减少
出生重的断奶前死亡率增加
限制性因素:人员
猪场之间的断奶前死亡率的主要差异
限制性因素:人员
人手不够、高离职率、动物数量增加、人与猪之间的互动减少
害怕恐惧员工= 生产成绩降低
改善提高人的因素
寻找最佳员工(猎头最爱干的事,其实自己培养的,知根知底)
选择和培训
支持:资源和技术
限制性因素:缺乏相关应用研究
仔猪的出生数量超过了母猪的哺育能力:有效奶头的数量
增加哺育能力可选择的策略:交叉寄样、奶妈猪、人工的哺喂装置
限制性因素:缺乏相关应用研究
情况可能变得更糟:大学越来越注重探索性研究
以应用型研究的教师数量急剧下降
应用研究的科学家减少
没办法啊?大家都要发paper。。。。。。
看来国外也要靠paper 职称
限制性因素:技术发展受限
分娩舍的设计、设备及管理的限制
很多的问题
他们的解决办法在哪里?
典型的新生仔猪温度急剧下降
所有仔猪出生后,体温急剧下降
温度下降对新生仔猪的影响
大部分仔猪恢复
遗传改良在降低断奶前死亡率的巨大潜能
仔猪出生重的变化
仔猪的存活率
仔猪的活力
母猪和仔猪的行为
有效奶头数
泌乳及成分
仔猪平均出生重与窝产仔数规模大小之间的关系
增加研究和培训的机会
基于解决生产问题的研究
为行业吸引、培养年轻力量
Presenter Name: Michael Ellis, University of Illinois
Title: Managing piglet pre-weaning mortality: Issues and Opportunities
Introduction: Pre-weaning mortality (PWM) is not a new issue, being the major source of loss of potential output on commercial swine units. There is evidence that PWM has increased recently; PigChamp (2018) benchmarking data suggests that PWM increased from ~12% to ~15% and the number of stillbirths increased from ~0.8 to ~1.2 piglets/litter from 2004 to 2018. This is of concern from economic and animal welfare perspectives. Methods and Results: This presentation highlights major factors involved in this increasing PWM and highlights opportunities for improvement in sow and piglet management to combat this problem. A major reason for this increasing PWM is the substantial increase in litter sizes experienced in commercial production over recent decades. This has been accompanied by decreasing average piglet birth weight, increasing variation in birth weight, and, consequently, significant increases in the number of low birth weight piglets (i.e., weighing <1 kg). These can be more than 15% of piglets in large litters, and have PWM levels above 50%. Currently, litter sizes at birth often exceed the sow’s rearing capacity (i.e., number of functional teats) which, combined with the greater number of low birth weight piglets, creates major challenges for reducing PWM. Recent on-farm surveys suggest that the causes and timing of PWM have not changed. Major causes are crushing and starvation, and the majority of losses occur in the first few days after birth.Pre-weaning mortality is complex; minimizing PWM requires integrated approaches to create optimum conditions for piglet survival. It is beyond the scope of this presentation to comprehensively review all possible approaches; instead the focus will be on the results of some recent research. The starting point is to minimize stillbirths, which are high in later parity sows and larger litters (>12 piglets). Supervision of farrowings with appropriate intervention is effective; there is also evidence that the energy status of the sow (blood glucose levels) at the time of farrowing is negatively associated with stillbirth rates. More frequent feeding of sows prior to farrowing and feeding high fiber ingredients in late gestation can improve sow energy status and reduce stillbirth levels. After farrowing, early piglet care is critical. Some key interventions include minimizing the decline in piglet body temperature (e.g., by drying and warming) and ensuring adequate colostrum consumption immediately after birth. With the number of live born piglets frequently exceeding the sows’ rearing capacity, increased reliance on alternative rearing strategies (e.g., cross-fostering, use of nurse sows, and complimentary rearing with liquid milk replacers) is likely. There is limited published research on the effect of these approaches on PWM and most previous studies were carried out with litter sizes considerably smaller than those currently experienced on commercial facilities. Conclusions: We have moved into a new era of sow productivity that will require a re-evaluation of all aspects of sow and piglet management. Unfortunately, research has not kept pace with commercial developments and there is a dearth of published information available that can be used to define optimum procedures to minimize PWM.