因果科学算法、框架、数据集汇总
导语
本文收集了相关的概率编程框架、工具包、数据集及基准,并依此进行分类。特别感谢因果社区成员闫和东的梳理和总结,感谢龚鹤扬、张天健、李奉治、段月然、孙钦贵参与讨论和贡献,我们后续会对相应的算法做更详细的介绍和说明,请对相关内容感兴趣的同学或者老师加入因果社区,一起贡献!
1. 简介
因果科学的工作大致可以分为基础因果假设及框架(fundamental causal assumption and framework)、因果学习(causal learning)、因果推断(causal reasoning/inference)和应用系统,其中因果学习又可以分为因果结构学习(causal discovery/causal structure learning)和因果表示学习(causal representation learning)。
本文收集了相关的概率编程框架、工具包、数据集及基准,并依此进行分类。
2. 概率编程框架
相关链接:
pyro:
http://pyro.ai/
pymc3:
pgmpy:
https://github.com/pgmpy/pgmpy
pomegranate:
https://github.com/jmschrei/pomegranate
3. 工具包
相关链接:
TETRAD:
https://github.com/cmu-phil/tetrad
CausalDiscoveryToolbox:
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
gCastle:
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
tigramite:
https://github.com/jakobrunge/tigramite
Ananke:
https://ananke.readthedocs.io/en/latest/
EconML:
https://github.com/microsoft/EconML
dowhy:
https://github.com/microsoft/dowhy
causalml:
https://github.com/uber/causalml
WhyNot:
https://whynot.readthedocs.io/en/latest/
CausalImpact:
https://github.com/google/CausalImpact
Causal-Curve:
https://github.com/ronikobrosly/causal-curve
grf:
https://github.com/grf-labs/grf
dosearch:
https://cran.r-project.org/web/packages/dosearch/index.html
causalnex:
https://github.com/quantumblacklabs/causalnex
4. 数据集或基准