(9条消息) ocr图像预处理
说明:文字方向校正(fft方式和放射变换方式)参考了网上的代码,只做了少量修改
只针对医疗影像图像,自然场景下的另说
因为处理的图像都很大很大,居然有11000*12000这种分辨率的,有90M大小,我也是醉了,绝大部分都是6000左右分辨率的图像,这种图像直接送到CTPN里的话,效果不是太好,太大了 而且效率感人,所以必须做一下预处理。大部分的X光图像很简单,直接缩放送CTPN即可,而CT和MRI图像虽然一张上有很多小图像,但好在要么有虚线分割要么中间都会留有空白的地方,于是就可以利用直线检测和投影检测来把图片分割成若干小图像了。(吐槽一下之前老外写的代码,不管三七二十一把所有图像都是分成上下两部分,然后上下再各分成上下两部分,四个部分再分别循环他的N个算法,搞的整个系统70%以上的资源都在跑OCR,一张很简单的图片最低也要几分钟才能出结果,复杂一点的都是10几分钟 真想知道这是怎么过验收的!)
- 图像分割,思想很简单 有虚线的直接做直线检测,有空白的做X、Y轴的投影,都没有的就是X光图像了,直接把整张图像当做ROI送CTPN
def _img_split_with_hough(img, min=100, max=220): """ :param img: 读入的二值化图 :param min: 边缘检测阈值 :param max: 边缘检测阈值 :return: 水平和垂直线的坐标集合 """ h = img.shape[0] w = img.shape[1] edges = cv2.Canny(img, min, max) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 30, minLineLength=100, maxLineGap=10) lines1 = lines[:, 0, :] h_line = [] v_line = [] for x1, y1, x2, y2 in lines1[:]: if y2 == y1: flag = False for element in h_line: if abs(element[1] - y1) < 10: flag = True break if flag == False and abs(x1 - x2) > w * 0.5: h_line.append((x1, y1, x2, y2)) elif x1 == x2: flag = False for element in v_line: if abs(element[0] - x1) < 10: flag = True break if flag == False and abs(y1 - y2) > h * 0.5: v_line.append((x1, y1, x2, y2)) return h_line, v_line def _img_split_with_shadow(gray_img, threshold_value=180): """ :param binary_img: 读入的灰度图 :param img_show: :return: 水平和垂直线的坐标集合 """ h = gray_img.shape[0] w = gray_img.shape[1] # 按行求和 sum_x = np.sum(gray_img, axis=1) # 按列求和 sum_y = np.sum(gray_img, axis=0) h_line_index = np.argwhere(sum_x < 10) v_line_index = np.argwhere(sum_y < 10) h_line_index = np.reshape(h_line_index, (h_line_index.shape[0],)) v_line_index = np.reshape(v_line_index, (v_line_index.shape[0],)) h_line = [(0, h_line_index[0], w - 1, h_line_index[0]), (0, h_line_index[-1], w - 1, h_line_index[-1])] if len( h_line_index) > 0 else [] v_line = [(v_line_index[0], 0, v_line_index[0], h - 1), (v_line_index[-1], 0, v_line_index[-1], h - 1)] if len( v_line_index) > 0 else [] for i in range(len(h_line_index) - 1): if h_line_index[i + 1] - h_line_index[i] > 2: h_line.append((0, h_line_index[i], w - 1, h_line_index[i])) for i in range(len(v_line_index) - 1): if v_line_index[i + 1] - v_line_index[i] > 2: v_line.append((v_line_index[i], 0, v_line_index[i], h - 1)) return h_line, v_linedef _combine_rect(h_lines, v_lines, w, h): rects = [] # 添加第一行(列)和最后一行(列) x_axis = sorted(set([0, w - 1] + [item[0] for item in v_lines])) y_axis = sorted(set([0, h - 1] + [item[1] for item in h_lines])) point_list = [] for y in y_axis: point = [] for x in x_axis: point.append((y, x)) point_list.append(point) for y_index in range(len(y_axis) - 1): if y_axis[y_index + 1] - y_axis[y_index] <= 10: continue for x_index in range(len(x_axis) - 1): if x_axis[x_index + 1] - x_axis[x_index] <= 10: continue rects.append((y_axis[y_index], x_axis[x_index], y_axis[y_index + 1], x_axis[x_index + 1])) return rectsdef img_split(img_file, threshold_value=180, img_show=False): """ :param img_file: 输入图片路径 :param img_show: 是否显示 :return: 分割后的子图像rect列表 """ img = cv2.imread(img_file, 1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = color_nomal(gray) # ret, binary = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY) h = img.shape[0] w = img.shape[1] rate = h // w if h > w else w // h h_line, v_line = _img_split_with_shadow(gray) if len(h_line) < 1 and len(v_line) < 1: h_line, v_line = _img_split_with_hough(gray) rects = _combine_rect(h_line, v_line, w, h) split_imgs = [] for rect in rects: split_imgs.append(img[rect[0]:rect[2], rect[1]:rect[3]]) if img_show: for rect in rects: cv2.rectangle(img, (rect[1], rect[0]), (rect[3], rect[2]), (0, 255, 0), 2) img = cv2.resize(img, (int(h * 0.7), int(h * 0.7 / rate))) cv2.imshow('cece', img) cv2.waitKey() return split_imgs
分割结果
2. 文字方向校正,可以使用FFT变换后校正然后再逆变换回来,也可以直接使用查找包含文字区域的矩形,旋转这个矩形,但是这种方法对于垂直的图像就没效果了,因为会发现包含文字的矩形区域就是方方正正的 不用校正。在二值化的时候采用了自适应二值化,这样做的好处是能更精确的定位文字区域,全局二值化可能会造成有些地方一团黑。
def rotated_img_with_fft(gray): # 图像延扩 h, w = gray.shape[:2] new_h = cv2.getOptimalDFTSize(h) new_w = cv2.getOptimalDFTSize(w) right = new_w - w bottom = new_h - h nimg = cv2.copyMakeBorder(gray, 0, bottom, 0, right, borderType=cv2.BORDER_CONSTANT, value=0) # 执行傅里叶变换,并过得频域图像 f = np.fft.fft2(nimg) fshift = np.fft.fftshift(f) fft_img = np.log(np.abs(fshift)) fft_img = (fft_img - np.amin(fft_img)) / (np.amax(fft_img) - np.amin(fft_img)) fft_img *= 255 ret, thresh = cv2.threshold(fft_img, 150, 255, cv2.THRESH_BINARY) # 霍夫直线变换 thresh = thresh.astype(np.uint8) lines = cv2.HoughLinesP(thresh, 1, np.pi / 180, 30, minLineLength=40, maxLineGap=100) try: lines1 = lines[:, 0, :] except Exception as e: lines1 = [] # 创建一个新图像,标注直线 # lineimg = np.ones(nimg.shape,dtype=np.uint8) # lineimg = lineimg * 255 piThresh = np.pi / 180 pi2 = np.pi / 2 angle = 0 for line in lines1: # x1, y1, x2, y2 = line[0] x1, y1, x2, y2 = line # cv2.line(lineimg, (x1, y1), (x2, y2), (0, 255, 0), 2) if x2 - x1 == 0: continue else: theta = (y2 - y1) / (x2 - x1) if abs(theta) < piThresh or abs(theta - pi2) < piThresh: continue else: angle = abs(theta) break angle = math.atan(angle) angle = angle * (180 / np.pi) print(angle) # cv2.imshow("line image", lineimg) center = (w // 2, h // 2) height_1 = int(w * fabs(sin(radians(angle))) + h * fabs(cos(radians(angle)))) width_1 = int(h * fabs(sin(radians(angle))) + w * fabs(cos(radians(angle)))) M = cv2.getRotationMatrix2D(center, angle, 1.0) M[0, 2] += (width_1 - w) / 2 M[1, 2] += (height_1 - h) / 2 rotated = cv2.warpAffine(gray, M, (width_1, height_1), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) cv2.imshow('rotated', rotated) cv2.waitKey(0) return rotateddef rotated_img_with_radiation(gray, is_show=False): thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) if is_show: cv2.imshow('thresh', thresh) # 计算包含了旋转文本的最小边框 coords = np.column_stack(np.where(thresh > 0)) # 该函数给出包含着整个文字区域矩形边框,这个边框的旋转角度和图中文本的旋转角度一致 angle = cv2.minAreaRect(coords)[-1] print(angle) # 调整角度 if angle < -45: angle = -(90 + angle) else: angle = -angle # 仿射变换 h, w = gray.shape[:2] center = (w // 2, h // 2) print(angle) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(gray, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) if is_show: cv2.putText(rotated, 'Angle: {:.2f} degrees'.format(angle), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) print('[INFO] angel :{:.3f}'.format(angle)) cv2.imshow('Rotated', rotated) cv2.waitKey() return rotated
放射校正结果:
原图:
放射校正:
fft校正,计算的时候有大概2度的误差
赞 (0)